Abstract

Down-conversion is a feasible way to improve conversion efficiency of silicon solar cell. However, the width of excitation band for down-converter based on trivalent lanthanide ions is still not satisfying. Here, we designed and fabricated a heterostructural down-converter composed of Y2O3: [(Tb3+-Yb3+), Li+] quantum cutting phosphor and ZnSe. The ZnSe phase was used to absorb the incident light with energy larger than its bandgap, and transfer the energy to Tb3+-Yb3+ quantum cutting couple. Short-wavelength incident light was finally converted into a strong Yb3+ emission at about 1000 nm, locating at the maximal spectral response of silicon solar cell. The excitation band of the down-conversion covers a wide region of 250-550 nm. Benefiting from the energy match between ZnSe bandgap and 7F65D4 absorption of Tb3+ ions, the bandwidth of down-conversion is almost maximized.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
    [CrossRef] [PubMed]
  2. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
    [CrossRef]
  3. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
    [CrossRef] [PubMed]
  4. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
    [CrossRef]
  5. B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
    [CrossRef]
  6. X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
    [CrossRef] [PubMed]
  7. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
    [CrossRef]
  8. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
    [CrossRef]
  9. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957).
    [CrossRef]
  10. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088 (2009).
    [CrossRef]
  11. Y. Chen, J. Wang, C. M. Liu, J. K. Tang, X. J. Kuang, M. M. Wu, and Q. Su, “UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor,” Opt. Express 21(3), 3161–3169 (2013).
    [CrossRef] [PubMed]
  12. Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
    [CrossRef]
  13. R. Martín-Rodríguez, R. Geitenbeek, and A. Meijerink, “Incorporation and luminescence of Yb3+ in CdSe nanocrystals,” J. Am. Chem. Soc. 135(37), 13668–13671 (2013).
    [CrossRef] [PubMed]
  14. Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Near-infrared emission of Yb3+ through energy transfer from ZnO to Yb3+ in glass ceramic containing ZnO nanocrystals,” Opt. Lett. 36(15), 2767–2769 (2011).
    [CrossRef] [PubMed]
  15. F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
    [CrossRef]

2013 (2)

2012 (3)

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[CrossRef]

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[CrossRef] [PubMed]

2011 (2)

Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Near-infrared emission of Yb3+ through energy transfer from ZnO to Yb3+ in glass ceramic containing ZnO nanocrystals,” Opt. Lett. 36(15), 2767–2769 (2011).
[CrossRef] [PubMed]

Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
[CrossRef]

2009 (3)

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

2007 (1)

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

2002 (1)

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

1999 (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[CrossRef] [PubMed]

1957 (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[CrossRef]

Arkhipov, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Bai, Z. H.

Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
[CrossRef]

Beaucarne, G.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Chen, R.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Chen, Y.

Chlique, C.

B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[CrossRef]

Del Canizo, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957).
[CrossRef]

Dong, Z. L.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Donker, H.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Fan, B.

B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[CrossRef]

Fan, X.

B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[CrossRef]

Fan, X. P.

Fujii, M.

Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
[CrossRef]

Geitenbeek, R.

R. Martín-Rodríguez, R. Geitenbeek, and A. Meijerink, “Incorporation and luminescence of Yb3+ in CdSe nanocrystals,” J. Am. Chem. Soc. 135(37), 13668–13671 (2013).
[CrossRef] [PubMed]

Green, M. A.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

Han, S. Y.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[CrossRef] [PubMed]

Hasegawa, T.

Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
[CrossRef]

Hayashi, S.

Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
[CrossRef]

Huang, W.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[CrossRef] [PubMed]

Huang, X. Y.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[CrossRef] [PubMed]

Imakita, K.

Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Kuang, X. J.

Liu, C. M.

Liu, X. G.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[CrossRef] [PubMed]

Luo, Q.

Martín-Rodríguez, R.

R. Martín-Rodríguez, R. Geitenbeek, and A. Meijerink, “Incorporation and luminescence of Yb3+ in CdSe nanocrystals,” J. Am. Chem. Soc. 135(37), 13668–13671 (2013).
[CrossRef] [PubMed]

McCann, M.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Meijerink, A.

R. Martín-Rodríguez, R. Geitenbeek, and A. Meijerink, “Incorporation and luminescence of Yb3+ in CdSe nanocrystals,” J. Am. Chem. Soc. 135(37), 13668–13671 (2013).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Merdrignac-Conanec, O.

B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[CrossRef]

Mizuhata, M.

Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
[CrossRef]

Oskam, K. D.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Qiao, X. S.

Shen, Y. Q.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Slaoui, A.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Strümpel, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Su, Q.

Y. Chen, J. Wang, C. M. Liu, J. K. Tang, X. J. Kuang, M. M. Wu, and Q. Su, “UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor,” Opt. Express 21(3), 3161–3169 (2013).
[CrossRef] [PubMed]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088 (2009).
[CrossRef]

Sun, H. D.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Švrcek, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Tang, J. K.

Tobiasd, I.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[CrossRef]

Vander Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Wang, H. H.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Wang, J.

Y. Chen, J. Wang, C. M. Liu, J. K. Tang, X. J. Kuang, M. M. Wu, and Q. Su, “UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor,” Opt. Express 21(3), 3161–3169 (2013).
[CrossRef] [PubMed]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088 (2009).
[CrossRef]

Wegh, R. T.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Wu, M. M.

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

Xiao, F.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Zhang, G. G.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088 (2009).
[CrossRef]

Zhang, Q. H.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088 (2009).
[CrossRef]

Zhang, Q. Y.

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

Zhang, X.

B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[CrossRef]

Zhang, X. H.

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[CrossRef]

Chem. Soc. Rev. (1)

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

R. Martín-Rodríguez, R. Geitenbeek, and A. Meijerink, “Incorporation and luminescence of Yb3+ in CdSe nanocrystals,” J. Am. Chem. Soc. 135(37), 13668–13671 (2013).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

J. Mater. Chem. (1)

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088 (2009).
[CrossRef]

J. Phys. Chem. C (2)

F. Xiao, R. Chen, Y. Q. Shen, Z. L. Dong, H. H. Wang, Q. Y. Zhang, and H. D. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[CrossRef]

B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, “Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites,” J. Phys. D Appl. Phys. 44(45), 455301 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Phys. Rev. (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957).
[CrossRef]

Phys. Rev. B (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Vander Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Science (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the down-conversion process design. Due to the energy match between ZnSe bandgap and 7F65D4 absorption of Tb3+ ions, the bandwidth of down-conversion is almost maximized.

Fig. 2
Fig. 2

Theta-2theta XRD pattern indicates that the heterostructural down-converter is composed of only ZnSe and Y2O3:[(Tb3+-Yb3+), Li+] phases . Inset: typical top-view SEM image of sample C, showing a plum-pudding-like morphology.

Fig. 3
Fig. 3

(A) PL and Excitation spectra of Yb3+ 2F5/22F7/2 emission in sample C. (B) Excitation spectra of Yb3+ NIR emission in the single Y2O3:[(Tb3+-Yb3+), Li+] phosphor (Tb:0.01, Yb:0.06) and the semiconductor(ZnS, ZnO, ZnSe)/phosphor(Tb:0.01, Yb:0.06) heterrostructures. (C) Excitation spectra of the ZnSe/phosphor heterostructures with different Tb and Yb fraction.

Fig. 4
Fig. 4

ET diagrams in the ZnSe/phosphor heterostructure.

Fig. 5
Fig. 5

(A) XRD pattern and photograph of the ZnSe/ Y2O3:[(Tb3+-Yb3+), Li+] double-layer thin films. Inset: a photograph of the double-layer film. (B) NIR PL spectrum of Yb3+, excited at 315 nm. (C) excitation spectra of Yb 975-nm emission of phosphor single-layer thin film and ZnSe/Y2O3:[(Tb3+-Yb3+), Li+] double-layer thin film. (D) The “corrected” excitation spectra of the above samples with considering the sunlight spectral distribution. The spectral distribution of sunlight is also shown here.

Metrics