Abstract

We report on the fabrication and simulation of a green OLED with an Internal Light Extraction (ILE) layer. The optical behavior of these devices is simulated using both Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time-Domain (FDTD) methods. Results obtained using these two different techniques show excellent agreement and predict the experimental results with good precision. By verifying the validity of both simulation methods on the internal light extraction structure we pave the way to optimization of ILE layers using either of these methods.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91(2), 595–604 (2002).
    [CrossRef]
  2. S. Möller and S. R. Forrest, “Improved light out-coupling in organic light-emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
    [CrossRef]
  3. Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
    [CrossRef]
  4. C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lüssem, L. Müller-Meskamp, K. Leo, M. C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21(14), 16319–16330 (2013).
    [CrossRef] [PubMed]
  5. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
    [CrossRef]
  6. M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11125–11135 (2000).
    [CrossRef]
  7. C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron. 13(6), 1073–1080 (2012).
    [CrossRef]
  8. J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
    [CrossRef]
  9. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [CrossRef]
  10. Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/ .
  11. Kahnert and F. Michael, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 775–824 (2003).
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  13. P. Bienstman, “CAMFR manual,” version 1.3. http://camfr.sourceforge.net/docs/camfr.pdf .
  14. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” PhD thesis (2001).
  15. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15(4), 962–971 (1998).
    [CrossRef]
  16. S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
    [CrossRef]
  17. Fluxim,”Setfos 3.2,” Release 3.2.2657, http://www.fluxim.com .

2014 (1)

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

2013 (1)

2012 (1)

C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron. 13(6), 1073–1080 (2012).
[CrossRef]

2008 (2)

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

2006 (1)

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
[CrossRef]

2003 (1)

Kahnert and F. Michael, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 775–824 (2003).

2002 (2)

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91(2), 595–604 (2002).
[CrossRef]

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light-emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[CrossRef]

2000 (1)

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11125–11135 (2000).
[CrossRef]

1998 (1)

1981 (1)

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Altun, A. O.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Barnes, W. L.

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11125–11135 (2000).
[CrossRef]

Chang, C. H.

C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron. 13(6), 1073–1080 (2012).
[CrossRef]

Chang, H. H.

C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron. 13(6), 1073–1080 (2012).
[CrossRef]

Chang, K. Y.

C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron. 13(6), 1073–1080 (2012).
[CrossRef]

Chang, S. J.

C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron. 13(6), 1073–1080 (2012).
[CrossRef]

Cho, D. H.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Cho, N. S.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Cho, S.-H.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
[CrossRef]

Choi, D.-G.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Chu, H. Y.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Do, Y. R.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
[CrossRef]

Eckardt, S.

Forrest, S. R.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light-emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[CrossRef]

Fuchs, C.

Gather, M. C.

Gaylord, T. K.

Han, J. H.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Hofmann, S.

Huh, J. W.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Hwang, J.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Jeon, S.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Jeong, J.-H.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Joo, C. W.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Kahnert,

Kahnert and F. Michael, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 775–824 (2003).

Kang, J.-W.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Kim, J.-J.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Kim, K.-D.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Kim, S.-H.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Kim, Y.-C.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
[CrossRef]

Lasagni, A.

Lee, J.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Lee, J. I.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Lee, Y.-H.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
[CrossRef]

Lee, Y.-J.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
[CrossRef]

Leo, K.

Lo, Y. J.

C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron. 13(6), 1073–1080 (2012).
[CrossRef]

Lu, M. H.

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91(2), 595–604 (2002).
[CrossRef]

Lüssem, B.

Michael, F.

Kahnert and F. Michael, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 775–824 (2003).

Moharam, M. G.

Möller, S.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light-emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[CrossRef]

Moon, J.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Müller-Meskamp, L.

Neyts, K. A.

Park, H.-D.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Park, S. K.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Roch, T.

Salt, M. G.

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11125–11135 (2000).
[CrossRef]

Scholz, R.

Schwab, T.

Shim, J.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Shin, J. W.

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Song, Y.-W.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
[CrossRef]

Sturm, J. C.

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91(2), 595–604 (2002).
[CrossRef]

Sun, Y.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Youn, J. R.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89(17), 173502 (2006).
[CrossRef]

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92(22), 223307 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Appl. Phys. (2)

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91(2), 595–604 (2002).
[CrossRef]

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light-emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

Kahnert and F. Michael, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 775–824 (2003).

Nat. Photonics (1)

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

Opt. Express (1)

Org. Electron. (2)

C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron. 13(6), 1073–1080 (2012).
[CrossRef]

J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron. 15(1), 196–202 (2014).
[CrossRef]

Phys. Rev. B (1)

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11125–11135 (2000).
[CrossRef]

Other (4)

Fluxim,”Setfos 3.2,” Release 3.2.2657, http://www.fluxim.com .

P. Bienstman, “CAMFR manual,” version 1.3. http://camfr.sourceforge.net/docs/camfr.pdf .

P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” PhD thesis (2001).

Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Yee cell used for FDTD simulations. (b) A staircase approximation of a trapezoid grating for RCWA modeling.

Fig. 2
Fig. 2

AFM picture of the replicated structure on the substrate with indication of the plane of detection.

Fig. 3
Fig. 3

(a) cross-section of the planar OLED. (b) cross-section of the OLED with ILE layer.

Fig. 4
Fig. 4

Two photographs of an OLED with ILE layer showing iridescent reflections. The OLED sample has a size of 2.6 x 2.8 cm2.

Fig. 5
Fig. 5

(a) Schematic drawing of the experimental setup used for Angular Spectral Measurements (ASMs). (b) OLED devices as simulated. (left) Planar OLED, (right) OLED with ILE layer.

Fig. 6
Fig. 6

(a) Wavelength dependency for the optical constants of Aluminum (Al) [17]. (b) Optical constants used in the model for the organic layer (Org.), the two fitted ITO layers, the planarization layer (PL) and the substrate (Sub).

Fig. 7
Fig. 7

(a) Measured transmission and fit based on two sub layers modeled with two lorentz oscillators . (b) Measured reflection and fit based on two sub layers modeled with two lorentz oscillators.

Fig. 8
Fig. 8

(a) Emitted intensity versus the emission angle for the planar OLED calculated with RCWA, FDTD as well as with the theoretical formulae and compared with the experimental data. The comparison is made for three different wavelengths (500, 550 and 600 nm) and excellent agreement is observed. (b) Emitted intensity versus the emission angle for two OLEDs with an ILE layer compared with the planar reference sample for a wavelength of 550 nm.

Fig. 9
Fig. 9

For three different wavelengths (500, 550 and 600 nm) the angular emission profile of the OLED with ILE layer is compared for simulated (FDTD and RCWA) and experimental data of two samples (sample 1 & 2).

Fig. 10
Fig. 10

Angular emission distribution as a function of the wavelength, simulated with the FDTD method.

Fig. 11
Fig. 11

Angular Spectral Measurement data (ASMs) showing the spectrum of the emitted radiation for different angles as measured in the plane of detection (see Fig. 2) for a reference sample (a) and a sample with ILE (b). The intensity scale in both figures. is identical.

Tables (1)

Tables Icon

Table 1 Integrating sphere measurements

Metrics