Abstract

We present to the best of our knowledge the first successful demonstration of a planar, self-tracking solar concentrator system capable of a 2-dimensional angular acceptance of over 40°. The light responsive mechanism allows for efficient waveguide coupling and light concentration independently of the angle of incidence within the angular range. A coupling feature is created at the focal spot of the optical system by locally melting a phase change material which acts as an actuator due to the large thermal expansion. A dichroic prism membrane reflects the visible light so that it is efficiently coupled into a waveguide at the point of the created coupling feature. We show simulation results for concentration and efficiency, validated by an experimental proof of concept demonstration of a self-tracking concentrator array element. Simulations show that a system based on this approach can achieve 150X effective concentration by scaling the system collecting area to reasonable dimensions (40 x 10 cm2).

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Swanson, “Photovoltaic Concentrators,” in Handbook of Photovoltaic Science A. Luque, and S. Hegedus (John Wiley & Sons, Ltd, 2005), pp. 449–503.
  2. http://www.entechsolar.com/products/solarvolt.htm , last access 13.01.2014.
  3. http://fn-solar.com/#2 , last access 13.01.2014.
  4. R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
    [CrossRef]
  5. R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
    [CrossRef]
  6. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
    [CrossRef] [PubMed]
  7. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [CrossRef] [PubMed]
  8. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19(S3Suppl 3), A207–A218 (2011).
    [CrossRef] [PubMed]
  9. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51(25), 6117–6124 (2012).
    [CrossRef] [PubMed]
  10. M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy 77(3), 269–280 (2004).
    [CrossRef]
  11. http://www.zomeworks.com/photovoltaic-tracking-racks/ , last access 14.11.2013.
  12. K. A. Baker, J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Reactive self-tracking solar concentrators: concept, design, and initial materials characterization,” Appl. Opt. 51(8), 1086–1094 (2012).
    [CrossRef] [PubMed]
  13. P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self-adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).
  14. V. Zagolla, E. Tremblay, and C. Moser, “Light induced fluidic waveguide coupling,” Opt. Express 20(S6), A924–A931 (2012).
    [CrossRef]
  15. V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
    [CrossRef]
  16. E. J. Tremblay, D. Loterie, and C. Moser, “Thermal phase change actuator for self-tracking solar concentration,” Opt. Express 20(S6), A964–A976 (2012).
    [CrossRef]
  17. E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
    [CrossRef]
  18. H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
    [CrossRef]
  19. E. Tremblay, V. Zagolla, D. Loterie, and C. Moser, “Self-tracking planar concentrator using a solar actuated phase-change mechanism,” Proc. SPIE 8620, 862011 (2013).
    [CrossRef]
  20. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  21. http://www.altadevices.com/pdfs/single_cell.pdf , last access 13.01.2014.
  22. S. Liu, D. Ding, S. R. Johnson, and Y.-H. Zhang, “Optimal optical designs for planar GaAs single-junction solar cells with textured and reflective surfaces,” Proc. SPIE 8256, 82560M (2012).
    [CrossRef]

2013 (2)

V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
[CrossRef]

E. Tremblay, V. Zagolla, D. Loterie, and C. Moser, “Self-tracking planar concentrator using a solar actuated phase-change mechanism,” Proc. SPIE 8620, 862011 (2013).
[CrossRef]

2012 (5)

2011 (1)

2010 (4)

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[CrossRef]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[CrossRef] [PubMed]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[CrossRef] [PubMed]

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[CrossRef]

2004 (2)

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy 77(3), 269–280 (2004).
[CrossRef]

2002 (1)

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
[CrossRef]

1978 (1)

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
[CrossRef]

Bailat, J.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Baker, K. A.

Carlen, E. T.

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
[CrossRef]

Castro, J. M.

Clifford, M. J.

M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy 77(3), 269–280 (2004).
[CrossRef]

Ding, D.

S. Liu, D. Ding, S. R. Johnson, and Y.-H. Zhang, “Optimal optical designs for planar GaAs single-junction solar cells with textured and reflective surfaces,” Proc. SPIE 8256, 82560M (2012).
[CrossRef]

Droz, C.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Duerr, F.

Eastwood, D.

M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy 77(3), 269–280 (2004).
[CrossRef]

Ford, J. E.

Gale, B. K.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[CrossRef]

Hallas, J. M.

Ho, T.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[CrossRef]

Johnson, S. R.

S. Liu, D. Ding, S. R. Johnson, and Y.-H. Zhang, “Optimal optical designs for planar GaAs single-junction solar cells with textured and reflective surfaces,” Proc. SPIE 8256, 82560M (2012).
[CrossRef]

Karp, J. H.

Kostuk, R. K.

Kroll, U.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Liu, S.

S. Liu, D. Ding, S. R. Johnson, and Y.-H. Zhang, “Optimal optical designs for planar GaAs single-junction solar cells with textured and reflective surfaces,” Proc. SPIE 8256, 82560M (2012).
[CrossRef]

Loterie, D.

E. Tremblay, V. Zagolla, D. Loterie, and C. Moser, “Self-tracking planar concentrator using a solar actuated phase-change mechanism,” Proc. SPIE 8620, 862011 (2013).
[CrossRef]

E. J. Tremblay, D. Loterie, and C. Moser, “Thermal phase change actuator for self-tracking solar concentration,” Opt. Express 20(S6), A964–A976 (2012).
[CrossRef]

Mastrangelo, C. H.

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
[CrossRef]

Meier, J.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Meuret, Y.

Moser, C.

E. Tremblay, V. Zagolla, D. Loterie, and C. Moser, “Self-tracking planar concentrator using a solar actuated phase-change mechanism,” Proc. SPIE 8620, 862011 (2013).
[CrossRef]

V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
[CrossRef]

E. J. Tremblay, D. Loterie, and C. Moser, “Thermal phase change actuator for self-tracking solar concentration,” Opt. Express 20(S6), A964–A976 (2012).
[CrossRef]

V. Zagolla, E. Tremblay, and C. Moser, “Light induced fluidic waveguide coupling,” Opt. Express 20(S6), A924–A931 (2012).
[CrossRef]

Myer, B.

Neuman, S.

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
[CrossRef]

Reisfeld, R.

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[CrossRef]

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
[CrossRef]

Sant, H. J.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[CrossRef]

Schade, H.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Shah, A.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Thienpont, H.

Tremblay, E.

E. Tremblay, V. Zagolla, D. Loterie, and C. Moser, “Self-tracking planar concentrator using a solar actuated phase-change mechanism,” Proc. SPIE 8620, 862011 (2013).
[CrossRef]

V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
[CrossRef]

V. Zagolla, E. Tremblay, and C. Moser, “Light induced fluidic waveguide coupling,” Opt. Express 20(S6), A924–A931 (2012).
[CrossRef]

Tremblay, E. J.

Vallat-Sauvain, E.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Wyrsch, N.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Zagolla, V.

E. Tremblay, V. Zagolla, D. Loterie, and C. Moser, “Self-tracking planar concentrator using a solar actuated phase-change mechanism,” Proc. SPIE 8620, 862011 (2013).
[CrossRef]

V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
[CrossRef]

V. Zagolla, E. Tremblay, and C. Moser, “Light induced fluidic waveguide coupling,” Opt. Express 20(S6), A924–A931 (2012).
[CrossRef]

Zhang, D.

Zhang, Y.-H.

S. Liu, D. Ding, S. R. Johnson, and Y.-H. Zhang, “Optimal optical designs for planar GaAs single-junction solar cells with textured and reflective surfaces,” Proc. SPIE 8256, 82560M (2012).
[CrossRef]

Appl. Opt. (3)

J. Microelectromech. Syst. (1)

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst. 11(3), 165–174 (2002).
[CrossRef]

J. Micromech. Microeng. (1)

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng. 20(8), 085039 (2010).
[CrossRef]

Nature (1)

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274(5667), 144–145 (1978).
[CrossRef]

Opt. Express (4)

Opt. Mater. (1)

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[CrossRef]

Proc. SPIE (3)

V. Zagolla, E. Tremblay, and C. Moser, “Efficiency of a micro-bubble reflector based, self-adaptive waveguide solar concentrator,” Proc. SPIE 8620, 862010 (2013).
[CrossRef]

E. Tremblay, V. Zagolla, D. Loterie, and C. Moser, “Self-tracking planar concentrator using a solar actuated phase-change mechanism,” Proc. SPIE 8620, 862011 (2013).
[CrossRef]

S. Liu, D. Ding, S. R. Johnson, and Y.-H. Zhang, “Optimal optical designs for planar GaAs single-junction solar cells with textured and reflective surfaces,” Proc. SPIE 8256, 82560M (2012).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Sol. Energy (1)

M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy 77(3), 269–280 (2004).
[CrossRef]

Other (6)

http://www.zomeworks.com/photovoltaic-tracking-racks/ , last access 14.11.2013.

R. Swanson, “Photovoltaic Concentrators,” in Handbook of Photovoltaic Science A. Luque, and S. Hegedus (John Wiley & Sons, Ltd, 2005), pp. 449–503.

http://www.entechsolar.com/products/solarvolt.htm , last access 13.01.2014.

http://fn-solar.com/#2 , last access 13.01.2014.

http://www.altadevices.com/pdfs/single_cell.pdf , last access 13.01.2014.

P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self-adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).

Supplementary Material (2)

» Media 1: AVI (3468 KB)     
» Media 2: AVI (3865 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics