Abstract

We report a study of the optical properties of silicon moth-eye structures using a custom-made fully automated broadband spectroscopic reflectometry system (goniometer). This measurement system is able to measure specular reflectance as a function of wavelength, polar incidence angle and azimuth orientation angle, from normal to near-parallel polar incidence angle. The system uses a linear polarized broadband super-continuum laser light source. It is shown that a moth-eye structure composed of a regular array of protruding silicon rods, with finite sidewall angle reduces reflectance and sensitivity to incident wavelength in comparison to truly cylindrical rods with perpendicular sidewalls. It is also shown that moth-eye structures have omnidirectional reflectance properties in response to azimuth orientation of the sample. The importance of applying the reflectometer setup to study the optical properties of solar cell antireflective structures is highlighted.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Bagnall and S. A. Boden, Energy Harvesting for Autonomous Systems (Artech House, 2010).
  2. S. Boden, “Biomimetic nanostructured surfaces for antireflection in photovoltaics,” Ph.D. thesis, University of Southampton (2009).
  3. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black multi-crystalline silicon solar cells,” Phys. Status Solidi Rapid Res. Lett. 1, R53–R55 (2007).
    [CrossRef]
  4. D. King and M. E. Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” in Proc. 22nd IEEE Photovolt. Spec. Conf., Las Vegas, Nevada (1991).
  5. A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
    [CrossRef]
  6. M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovoltaics Res. Appl. 14(3), 225–235 (2006).
    [CrossRef]
  7. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron Dev. 38, 1925–1934 (1991).
    [CrossRef]
  8. U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells,” Appl. Surf. Sci. 230, 364–370 (2004).
    [CrossRef]
  9. J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66, 3636–3638 (1995).
    [CrossRef]
  10. R. Kishore, S. Singh, and B. Das, “PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 26, 27–35 (1992).
    [CrossRef]
  11. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
    [CrossRef]
  12. I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
    [CrossRef]
  13. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl. 21, 827–837 (2013).
    [CrossRef]
  14. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  15. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 13, 525–526 (1996).
    [CrossRef]
  16. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 14, 737–741 (1997).
    [CrossRef]
  17. W. L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92, 141109 (2008).
    [CrossRef]
  18. S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).
  19. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–57 (1997).
    [CrossRef]
  20. K.-S. Han, J.-H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 94, 583–587 (2010).
    [CrossRef]
  21. K.-S. Han, J.-H. Shin, K.-I. Kim, and H. Lee, “Nanosized structural anti-reflection layer for thin film solar cells,” Jpn. J. Appl. Phys. 50, 020207 (2011).
  22. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
    [CrossRef]
  23. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
    [CrossRef]
  24. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
    [CrossRef]
  25. S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 74010J (2009).
    [CrossRef]
  26. A. Parretta, A. Sarno, and H. Yakubu, “Non-destructive optical characterization of photovoltaic modules by integrating sphere, Part I: Mono-Si modules,” Opt. Commun. 161, 297–309 (1999).
    [CrossRef]
  27. P. Maddalena, A. Parretta, A. Sarno, and P. Tortora, “Novel techniques for the optical characterization of photovoltaic materials and devices,” Opt. Lasers Eng. 39, 165–177 (2003).
    [CrossRef]
  28. M. F. A. Muttalib, S. Z. Oo, and M. D. B. Charlton, “Experimental measurement of photonic/plasmonic crystal dispersion, applied to the investigation of surface plasmon dispersion for sers sensing applications,” Proc. SPIE 8264, 82641C (2012).
    [CrossRef]
  29. E. Hecht, Optics (Addison Wesley, 2002).
  30. R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
    [CrossRef]
  31. S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated planar silicon solar cells,” Prog. Photovoltaics Res. Appl. 17, 241–252 (2009).
    [CrossRef]
  32. S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
    [CrossRef] [PubMed]
  33. C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
    [CrossRef]
  34. J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed uv-nanoimprint lithography tool,” Microelectron. Eng. 85, 861–865 (2008).
    [CrossRef]
  35. C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001 (2008).
    [CrossRef]

2013 (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl. 21, 827–837 (2013).
[CrossRef]

2012 (1)

M. F. A. Muttalib, S. Z. Oo, and M. D. B. Charlton, “Experimental measurement of photonic/plasmonic crystal dispersion, applied to the investigation of surface plasmon dispersion for sers sensing applications,” Proc. SPIE 8264, 82641C (2012).
[CrossRef]

2011 (1)

K.-S. Han, J.-H. Shin, K.-I. Kim, and H. Lee, “Nanosized structural anti-reflection layer for thin film solar cells,” Jpn. J. Appl. Phys. 50, 020207 (2011).

2010 (3)

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
[CrossRef]

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

K.-S. Han, J.-H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 94, 583–587 (2010).
[CrossRef]

2009 (2)

S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated planar silicon solar cells,” Prog. Photovoltaics Res. Appl. 17, 241–252 (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 74010J (2009).
[CrossRef]

2008 (4)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed uv-nanoimprint lithography tool,” Microelectron. Eng. 85, 861–865 (2008).
[CrossRef]

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001 (2008).
[CrossRef]

W. L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92, 141109 (2008).
[CrossRef]

2007 (1)

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black multi-crystalline silicon solar cells,” Phys. Status Solidi Rapid Res. Lett. 1, R53–R55 (2007).
[CrossRef]

2006 (2)

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovoltaics Res. Appl. 14(3), 225–235 (2006).
[CrossRef]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

2005 (1)

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

2004 (1)

U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells,” Appl. Surf. Sci. 230, 364–370 (2004).
[CrossRef]

2003 (1)

P. Maddalena, A. Parretta, A. Sarno, and P. Tortora, “Novel techniques for the optical characterization of photovoltaic materials and devices,” Opt. Lasers Eng. 39, 165–177 (2003).
[CrossRef]

2002 (1)

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

1999 (2)

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

A. Parretta, A. Sarno, and H. Yakubu, “Non-destructive optical characterization of photovoltaic modules by integrating sphere, Part I: Mono-Si modules,” Opt. Commun. 161, 297–309 (1999).
[CrossRef]

1998 (1)

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

1997 (2)

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–57 (1997).
[CrossRef]

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 14, 737–741 (1997).
[CrossRef]

1996 (1)

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 13, 525–526 (1996).
[CrossRef]

1995 (1)

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66, 3636–3638 (1995).
[CrossRef]

1992 (1)

R. Kishore, S. Singh, and B. Das, “PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 26, 27–35 (1992).
[CrossRef]

1991 (1)

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron Dev. 38, 1925–1934 (1991).
[CrossRef]

1986 (1)

R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

1982 (1)

S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Abbott, M.

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovoltaics Res. Appl. 14(3), 225–235 (2006).
[CrossRef]

Altermatt, P.

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66, 3636–3638 (1995).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 74010J (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated planar silicon solar cells,” Prog. Photovoltaics Res. Appl. 17, 241–252 (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

D. M. Bagnall and S. A. Boden, Energy Harvesting for Autonomous Systems (Artech House, 2010).

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Betancourt, A. P.

W. L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92, 141109 (2008).
[CrossRef]

Bird, R. E.

R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

Boden, S.

S. Boden, “Biomimetic nanostructured surfaces for antireflection in photovoltaics,” Ph.D. thesis, University of Southampton (2009).

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated planar silicon solar cells,” Prog. Photovoltaics Res. Appl. 17, 241–252 (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 74010J (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

D. M. Bagnall and S. A. Boden, Energy Harvesting for Autonomous Systems (Artech House, 2010).

Brandt, M. S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black multi-crystalline silicon solar cells,” Phys. Status Solidi Rapid Res. Lett. 1, R53–R55 (2007).
[CrossRef]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Buck, M. E.

D. King and M. E. Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” in Proc. 22nd IEEE Photovolt. Spec. Conf., Las Vegas, Nevada (1991).

Chang, F.-Y.

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001 (2008).
[CrossRef]

Charlton, M. D. B.

M. F. A. Muttalib, S. Z. Oo, and M. D. B. Charlton, “Experimental measurement of photonic/plasmonic crystal dispersion, applied to the investigation of surface plasmon dispersion for sers sensing applications,” Proc. SPIE 8264, 82641C (2012).
[CrossRef]

Chen, C.-F.

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001 (2008).
[CrossRef]

Chen, H.-L.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

Cheng, C.-C.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

Choi, K.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed uv-nanoimprint lithography tool,” Microelectron. Eng. 85, 861–865 (2008).
[CrossRef]

Chou, C. P.

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001 (2008).
[CrossRef]

Chuang, S.-Y.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

Cotter, J.

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovoltaics Res. Appl. 14(3), 225–235 (2006).
[CrossRef]

Das, B.

R. Kishore, S. Singh, and B. Das, “PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 26, 27–35 (1992).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl. 21, 827–837 (2013).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl. 21, 827–837 (2013).
[CrossRef]

Ferrazza, F.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Gangopadhyay, U.

U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells,” Appl. Surf. Sci. 230, 364–370 (2004).
[CrossRef]

Gourgon, C.

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl. 21, 827–837 (2013).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66, 3636–3638 (1995).
[CrossRef]

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron Dev. 38, 1925–1934 (1991).
[CrossRef]

Han, K.-S.

K.-S. Han, J.-H. Shin, K.-I. Kim, and H. Lee, “Nanosized structural anti-reflection layer for thin film solar cells,” Jpn. J. Appl. Phys. 50, 020207 (2011).

K.-S. Han, J.-H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 94, 583–587 (2010).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002).

Heo, J.

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl. 21, 827–837 (2013).
[CrossRef]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

Jiang, B.

W. L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92, 141109 (2008).
[CrossRef]

Jiang, P.

W. L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92, 141109 (2008).
[CrossRef]

Joubert, O.

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

Kim, D.

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Kim, G.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed uv-nanoimprint lithography tool,” Microelectron. Eng. 85, 861–865 (2008).
[CrossRef]

Kim, J.

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Kim, K.

U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells,” Appl. Surf. Sci. 230, 364–370 (2004).
[CrossRef]

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Kim, K.-I.

K.-S. Han, J.-H. Shin, K.-I. Kim, and H. Lee, “Nanosized structural anti-reflection layer for thin film solar cells,” Jpn. J. Appl. Phys. 50, 020207 (2011).

King, D.

D. King and M. E. Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” in Proc. 22nd IEEE Photovolt. Spec. Conf., Las Vegas, Nevada (1991).

Kishore, R.

R. Kishore, S. Singh, and B. Das, “PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 26, 27–35 (1992).
[CrossRef]

Kosaku, A.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 14, 737–741 (1997).
[CrossRef]

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 13, 525–526 (1996).
[CrossRef]

Koynov, S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black multi-crystalline silicon solar cells,” Phys. Status Solidi Rapid Res. Lett. 1, R53–R55 (2007).
[CrossRef]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–57 (1997).
[CrossRef]

Landis, S.

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

Lazzarino, F.

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

Lee, H.

K.-S. Han, J.-H. Shin, K.-I. Kim, and H. Lee, “Nanosized structural anti-reflection layer for thin film solar cells,” Jpn. J. Appl. Phys. 50, 020207 (2011).

K.-S. Han, J.-H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 94, 583–587 (2010).
[CrossRef]

Lee, J.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed uv-nanoimprint lithography tool,” Microelectron. Eng. 85, 861–865 (2008).
[CrossRef]

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Lee, S.

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Lim, D.

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Lin, C.-H.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

Liu, H.-W.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

Maddalena, P.

P. Maddalena, A. Parretta, A. Sarno, and P. Tortora, “Novel techniques for the optical characterization of photovoltaic materials and devices,” Opt. Lasers Eng. 39, 165–177 (2003).
[CrossRef]

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

Mangalaraj, D.

U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells,” Appl. Surf. Sci. 230, 364–370 (2004).
[CrossRef]

Min, W. L.

W. L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92, 141109 (2008).
[CrossRef]

Miyamoto, K.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 14, 737–741 (1997).
[CrossRef]

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 13, 525–526 (1996).
[CrossRef]

Morris, G. M.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–57 (1997).
[CrossRef]

Motoyama, M.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 14, 737–741 (1997).
[CrossRef]

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 13, 525–526 (1996).
[CrossRef]

Muttalib, M. F. A.

M. F. A. Muttalib, S. Z. Oo, and M. D. B. Charlton, “Experimental measurement of photonic/plasmonic crystal dispersion, applied to the investigation of surface plasmon dispersion for sers sensing applications,” Proc. SPIE 8264, 82641C (2012).
[CrossRef]

Oo, S. Z.

M. F. A. Muttalib, S. Z. Oo, and M. D. B. Charlton, “Experimental measurement of photonic/plasmonic crystal dispersion, applied to the investigation of surface plasmon dispersion for sers sensing applications,” Proc. SPIE 8264, 82641C (2012).
[CrossRef]

Park, S.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed uv-nanoimprint lithography tool,” Microelectron. Eng. 85, 861–865 (2008).
[CrossRef]

Parm, I.

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Parretta, A.

P. Maddalena, A. Parretta, A. Sarno, and P. Tortora, “Novel techniques for the optical characterization of photovoltaic materials and devices,” Opt. Lasers Eng. 39, 165–177 (2003).
[CrossRef]

A. Parretta, A. Sarno, and H. Yakubu, “Non-destructive optical characterization of photovoltaic modules by integrating sphere, Part I: Mono-Si modules,” Opt. Commun. 161, 297–309 (1999).
[CrossRef]

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

Pelzer, R.

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

Perret, C.

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

Riordan, C.

R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

Sarno, A.

P. Maddalena, A. Parretta, A. Sarno, and P. Tortora, “Novel techniques for the optical characterization of photovoltaic materials and devices,” Opt. Lasers Eng. 39, 165–177 (2003).
[CrossRef]

A. Parretta, A. Sarno, and H. Yakubu, “Non-destructive optical characterization of photovoltaic modules by integrating sphere, Part I: Mono-Si modules,” Opt. Commun. 161, 297–309 (1999).
[CrossRef]

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

Shieh, J.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

Shin, J.-H.

K.-S. Han, J.-H. Shin, K.-I. Kim, and H. Lee, “Nanosized structural anti-reflection layer for thin film solar cells,” Jpn. J. Appl. Phys. 50, 020207 (2011).

K.-S. Han, J.-H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 94, 583–587 (2010).
[CrossRef]

Singh, S.

R. Kishore, S. Singh, and B. Das, “PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 26, 27–35 (1992).
[CrossRef]

Stutzmann, M.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black multi-crystalline silicon solar cells,” Phys. Status Solidi Rapid Res. Lett. 1, R53–R55 (2007).
[CrossRef]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Tallal, J.

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

Ting, C.-J.

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001 (2008).
[CrossRef]

Tortora, P.

P. Maddalena, A. Parretta, A. Sarno, and P. Tortora, “Novel techniques for the optical characterization of photovoltaic materials and devices,” Opt. Lasers Eng. 39, 165–177 (2003).
[CrossRef]

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

Wang, A.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66, 3636–3638 (1995).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl. 21, 827–837 (2013).
[CrossRef]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

Yakubu, H.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

A. Parretta, A. Sarno, and H. Yakubu, “Non-destructive optical characterization of photovoltaic modules by integrating sphere, Part I: Mono-Si modules,” Opt. Commun. 161, 297–309 (1999).
[CrossRef]

Yi, J.

U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells,” Appl. Surf. Sci. 230, 364–370 (2004).
[CrossRef]

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

Yoshida, A.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 14, 737–741 (1997).
[CrossRef]

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 13, 525–526 (1996).
[CrossRef]

Yu, C.-C.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

Zhao, J.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66, 3636–3638 (1995).
[CrossRef]

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron Dev. 38, 1925–1934 (1991).
[CrossRef]

Appl. Phys. Lett. (5)

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66, 3636–3638 (1995).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

W. L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett. 92, 141109 (2008).
[CrossRef]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells,” Appl. Surf. Sci. 230, 364–370 (2004).
[CrossRef]

Endeavour (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

IEEE Trans. Electron Dev. (1)

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron Dev. 38, 1925–1934 (1991).
[CrossRef]

J. Clim. Appl. Meteorol. (1)

R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

J. Micromech. Microeng. (1)

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001 (2008).
[CrossRef]

J. Mod. Opt. (1)

S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

J. Phys. D Appl. Phys. (1)

C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys. 38, 70 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K.-S. Han, J.-H. Shin, K.-I. Kim, and H. Lee, “Nanosized structural anti-reflection layer for thin film solar cells,” Jpn. J. Appl. Phys. 50, 020207 (2011).

Microelectron. Eng. (1)

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed uv-nanoimprint lithography tool,” Microelectron. Eng. 85, 861–865 (2008).
[CrossRef]

Nanoscale (1)

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale 2, 799–805 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–57 (1997).
[CrossRef]

Opt. Commun. (2)

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172, 139–151 (1999).
[CrossRef]

A. Parretta, A. Sarno, and H. Yakubu, “Non-destructive optical characterization of photovoltaic modules by integrating sphere, Part I: Mono-Si modules,” Opt. Commun. 161, 297–309 (1999).
[CrossRef]

Opt. Lasers Eng. (1)

P. Maddalena, A. Parretta, A. Sarno, and P. Tortora, “Novel techniques for the optical characterization of photovoltaic materials and devices,” Opt. Lasers Eng. 39, 165–177 (2003).
[CrossRef]

Phys. Status Solidi Rapid Res. Lett. (1)

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black multi-crystalline silicon solar cells,” Phys. Status Solidi Rapid Res. Lett. 1, R53–R55 (2007).
[CrossRef]

Proc. SPIE (2)

M. F. A. Muttalib, S. Z. Oo, and M. D. B. Charlton, “Experimental measurement of photonic/plasmonic crystal dispersion, applied to the investigation of surface plasmon dispersion for sers sensing applications,” Proc. SPIE 8264, 82641C (2012).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 74010J (2009).
[CrossRef]

Prog. Photovoltaics Res. Appl. (4)

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl. 18, 195–203 (2010).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl. 21, 827–837 (2013).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated planar silicon solar cells,” Prog. Photovoltaics Res. Appl. 17, 241–252 (2009).
[CrossRef]

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovoltaics Res. Appl. 14(3), 225–235 (2006).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

K.-S. Han, J.-H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 94, 583–587 (2010).
[CrossRef]

I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells 74, 97–105 (2002).
[CrossRef]

R. Kishore, S. Singh, and B. Das, “PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 26, 27–35 (1992).
[CrossRef]

Zool. Sci. (2)

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 13, 525–526 (1996).
[CrossRef]

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci. 14, 737–741 (1997).
[CrossRef]

Other (4)

E. Hecht, Optics (Addison Wesley, 2002).

D. King and M. E. Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” in Proc. 22nd IEEE Photovolt. Spec. Conf., Las Vegas, Nevada (1991).

D. M. Bagnall and S. A. Boden, Energy Harvesting for Autonomous Systems (Artech House, 2010).

S. Boden, “Biomimetic nanostructured surfaces for antireflection in photovoltaics,” Ph.D. thesis, University of Southampton (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

He-Ion microscope image of a wing of Cephonodes Hylas from 45° tilt (Scale bar 1μm). Inset shows a high magnification image of the same section of the wing (scale bar 200nm).

Fig. 2
Fig. 2

Reflectometer setup, photo and schematic diagram

Fig. 3
Fig. 3

Angle resolved specular reflectance of silicon measured by reflectometer (a and b) and calculated by Fresnel equations (c and d) at s polarisation and p polarisation

Fig. 4
Fig. 4

Comparison of the theoretical value of angular reflectance of silicon with experimental value at wavelengths of 500nm, 650nm and 800nm extracted from three runs of the measurement.

Fig. 5
Fig. 5

Top view (top) and side view (bottom) SEM images of moth-eye structures fabricated by nano-imprinting lithography. An outline of pillars are provided. The diameter of the top and bottom of the pillars is noted on the image. (a) Wafer 1 (cylindrical rods), Isotropic etch for 90s; (b) Wafer 2 (tapered rods), Isotropic etch for 90s, oxidation 5mins, oxide strip. (scale bar:100nm)

Fig. 6
Fig. 6

Comparison of the reflectance of silicon moth-eyes at normal incidence using probe measurement vs reflectometer measurement, (a) wafer 1 (cylindrical rods) and (b) wafer 2 (tapered rods). (c) mean average of normal incidence reflectance of silicon moth-eye structures measured by reflectometer.

Fig. 7
Fig. 7

Angle resolved specular reflectance of silicon moth-eye structures: (a) and (b) wafer 1 (cylindrical rods), (c) and (d) wafer 2 (tapered rods).

Fig. 8
Fig. 8

Total angular reflectance, (a) Wafer 1 (cylindrical rods), (b) Wafer 2 (tapered rods) in comparison with silicon.

Fig. 9
Fig. 9

Photograph of silicon moth-eye samples, wafer 1 (cylindrical rods) and wafer 2 (tapered rods), showing the reflection reduction in silicon caused by the moth-eye structures.

Fig. 10
Fig. 10

WSR of Silicon, Silicon moth-eyes, wafer 1 (cylindrical rods) and wafer 2 (tapered rods), and SLAR (Si3N4) and DLAR (SiO2/TiO2).

Fig. 11
Fig. 11

Comparison of the angular reflectance of silicon moth-eye wafer 2 (tapered rods) and PERL+DLAR structure taken from [5] at the wavelength of 632nm and the AOI of 2 – 83°. The azimuth angle of the Si moth-eye is varied between 0°, 30° and 60° and for the PERL+DLAR is varied between 0°, 45° and 90°.

Tables (1)

Tables Icon

Table 1 The laser power and integration time set for reflectance measurements performed on silicon moth-eye samples using the reflectometer

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R moth eye = I moth eye I dark I source I dark
R w ( θ ) = λ R ( λ , θ ) . PFD ( λ , θ ) λ PFD ( λ , θ )

Metrics