Abstract

A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [CrossRef]
  2. A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [CrossRef]
  3. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
    [CrossRef]
  4. R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
    [CrossRef]
  5. P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
    [CrossRef]
  6. C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant. 19, 4000110 (2013).
  7. A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
    [CrossRef]
  8. N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
    [CrossRef] [PubMed]
  9. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 98(16), 163105 (2011).
    [CrossRef]
  10. T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
    [CrossRef]
  11. S. Tomic, A. Marti, E. Antolin, and A. Luque, “On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells,” Appl. Phys. Lett. 99(5), 053504 (2011).
    [CrossRef]
  12. P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101(23), 231101 (2012).
    [CrossRef]
  13. T. Tayagaki, N. Usami, P. Wugen, Y. Hoshi, and Y. Kanemitsu, “Enhanced carrier extraction under strong light irradiation in Ge/Si type-II quantum dot solar cells,” in Photovoltaic Specialists Conference (PVSC),201238th IEEE(IEEE, Austin, TX, 2012), pp. 003200–003203.
    [CrossRef]
  14. A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
    [CrossRef]
  15. J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” J. Appl. Phys. 111(7), 074514 (2012).
    [CrossRef]
  16. V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78(20), 205321 (2008).
    [CrossRef]
  17. A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
    [CrossRef]
  18. N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
    [CrossRef] [PubMed]
  19. S. M. Hubbard, C. G. Bailey, R. Aguinaldo, S. Polly, D. V. Forbes, and R. P. Raffaelle, “Characterization of quantum dot enhanced solar cells for concentrator photovoltaics,” in Photovoltaic Specialists Conference (PVSC),200934th IEEE(IEEE, Philadelphia, PA, 2009), 000090–000095.
    [CrossRef]
  20. K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration,” J. Appl. Phys. 112, 084510 (2012).
  21. W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett. 101(3), 031906 (2012).
    [CrossRef]
  22. W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, “Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings,” IEEE Photonic Tech. L. 24(14), 1203–1205 (2012).
    [CrossRef]
  23. J. Nelson, The Physics of Solar Cells (World Scientific, 2003).
  24. T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
    [CrossRef]
  25. T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett. 95(26), 261106 (2009).
    [CrossRef]
  26. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
    [CrossRef] [PubMed]

2013 (1)

C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant. 19, 4000110 (2013).

2012 (9)

A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[CrossRef]

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101(23), 231101 (2012).
[CrossRef]

N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
[CrossRef] [PubMed]

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration,” J. Appl. Phys. 112, 084510 (2012).

W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett. 101(3), 031906 (2012).
[CrossRef]

W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, “Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings,” IEEE Photonic Tech. L. 24(14), 1203–1205 (2012).
[CrossRef]

J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” J. Appl. Phys. 111(7), 074514 (2012).
[CrossRef]

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

2011 (3)

S. Tomic, A. Marti, E. Antolin, and A. Luque, “On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells,” Appl. Phys. Lett. 99(5), 053504 (2011).
[CrossRef]

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[CrossRef] [PubMed]

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 98(16), 163105 (2011).
[CrossRef]

2009 (1)

T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett. 95(26), 261106 (2009).
[CrossRef]

2008 (4)

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78(20), 205321 (2008).
[CrossRef]

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

2007 (1)

R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
[CrossRef]

2006 (1)

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[CrossRef]

2000 (1)

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

1997 (1)

A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Ahsan, N.

N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
[CrossRef] [PubMed]

Alemu, A.

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[CrossRef]

Amano, T.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Aniel, F.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Antolin, E.

S. Tomic, A. Marti, E. Antolin, and A. Luque, “On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells,” Appl. Phys. Lett. 99(5), 053504 (2011).
[CrossRef]

Antolín, E.

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Bailey, C. G.

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 98(16), 163105 (2011).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Bailey, S. G.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Bensahel, D.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Bester, G.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78(20), 205321 (2008).
[CrossRef]

Botha, J. R.

P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101(23), 231101 (2012).
[CrossRef]

Boucaud, P.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Brunhes, T.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Campidelli, Y.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Campman, K.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[CrossRef] [PubMed]

Cánovas, E.

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

Carrington, P. J.

P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101(23), 231101 (2012).
[CrossRef]

Chang, S.-W.

W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett. 101(3), 031906 (2012).
[CrossRef]

Chuang, K.-Y.

C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant. 19, 4000110 (2013).

Coaquira, J. A. H.

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[CrossRef]

Cress, C. D.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

El-Emawy, M.

R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
[CrossRef]

El-Emawy, M. A.

T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett. 95(26), 261106 (2009).
[CrossRef]

Faini, G.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Farmer, C. D.

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

Filler, M. A.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Forbes, D. V.

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 98(16), 163105 (2011).
[CrossRef]

Freundlich, A.

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[CrossRef]

Furue, S.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Gu, T.

T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett. 95(26), 261106 (2009).
[CrossRef]

Hanna, M. C.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78(20), 205321 (2008).
[CrossRef]

Hernandez, C.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Hubbard, S. M.

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 98(16), 163105 (2011).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Huffaker, D. L.

R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
[CrossRef]

Hwang, J.

J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” J. Appl. Phys. 111(7), 074514 (2012).
[CrossRef]

Islam, M. M.

N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
[CrossRef] [PubMed]

Kayes, B. M.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Kelzenberg, M. D.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Kermarrec, O.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Khoshakhlagh, A.

R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
[CrossRef]

Komaki, H.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Krier, A.

P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101(23), 231101 (2012).
[CrossRef]

Laghumavarapu, R. B.

R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
[CrossRef]

Lay, T. S.

C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant. 19, 4000110 (2013).

Lester, L. F.

T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett. 95(26), 261106 (2009).
[CrossRef]

R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Lin, C.-C.

C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant. 19, 4000110 (2013).

Lin, M.-Y.

W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, “Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings,” IEEE Photonic Tech. L. 24(14), 1203–1205 (2012).
[CrossRef]

Lin, S.-Y.

W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, “Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings,” IEEE Photonic Tech. L. 24(14), 1203–1205 (2012).
[CrossRef]

W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett. 101(3), 031906 (2012).
[CrossRef]

Lin, W.-H.

W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett. 101(3), 031906 (2012).
[CrossRef]

W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, “Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings,” IEEE Photonic Tech. L. 24(14), 1203–1205 (2012).
[CrossRef]

Linares, P. G.

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

López, N.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[CrossRef] [PubMed]

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

Lourtioz, J. M.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Luque, A.

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[CrossRef]

S. Tomic, A. Marti, E. Antolin, and A. Luque, “On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells,” Appl. Phys. Lett. 99(5), 053504 (2011).
[CrossRef]

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Marti, A.

A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[CrossRef]

S. Tomic, A. Marti, E. Antolin, and A. Luque, “On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells,” Appl. Phys. Lett. 99(5), 053504 (2011).
[CrossRef]

Martí, A.

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Martin, A. J.

J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” J. Appl. Phys. 111(7), 074514 (2012).
[CrossRef]

Matsubara, K.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Millunchick, J. M.

J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” J. Appl. Phys. 111(7), 074514 (2012).
[CrossRef]

Miyashita, N.

N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
[CrossRef] [PubMed]

Moscho, A.

R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
[CrossRef]

Niki, S.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Norman, A. G.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78(20), 205321 (2008).
[CrossRef]

Numakami, O.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Okada, Y.

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration,” J. Appl. Phys. 112, 084510 (2012).

N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
[CrossRef] [PubMed]

Okano, Y.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Oshima, R.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Phillips, J. D.

J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” J. Appl. Phys. 111(7), 074514 (2012).
[CrossRef]

Popescu, V.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78(20), 205321 (2008).
[CrossRef]

Putnam, M. C.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Raffaelle, R. P.

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 98(16), 163105 (2011).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Ramiro, Í.

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

Reichertz, L. A.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[CrossRef] [PubMed]

Sagnes, I.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Sanchez, A. M.

P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101(23), 231101 (2012).
[CrossRef]

Sano, N.

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration,” J. Appl. Phys. 112, 084510 (2012).

Sauvage, S.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Shih, M.-H.

W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett. 101(3), 031906 (2012).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Stanley, C.

A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[CrossRef]

Stanley, C. R.

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

Stintz, A.

T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett. 95(26), 261106 (2009).
[CrossRef]

Sugaya, T.

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

Tan, M.-H.

C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant. 19, 4000110 (2013).

Tomic, S.

S. Tomic, A. Marti, E. Antolin, and A. Luque, “On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells,” Appl. Phys. Lett. 99(5), 053504 (2011).
[CrossRef]

Tsai, C.-P.

C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant. 19, 4000110 (2013).

Turner-Evans, D. B.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Wagener, M. C.

P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101(23), 231101 (2012).
[CrossRef]

Walukiewicz, W.

N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
[CrossRef] [PubMed]

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[CrossRef] [PubMed]

Wang, K.-W.

W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett. 101(3), 031906 (2012).
[CrossRef]

Wilt, D. M.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

Wu, S.-Y.

W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, “Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings,” IEEE Photonic Tech. L. 24(14), 1203–1205 (2012).
[CrossRef]

Yang, K.

T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett. 95(26), 261106 (2009).
[CrossRef]

Yoshida, K.

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration,” J. Appl. Phys. 112, 084510 (2012).

Yu, K. M.

N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
[CrossRef] [PubMed]

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[CrossRef] [PubMed]

Zunger, A.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78(20), 205321 (2008).
[CrossRef]

Appl. Phys. Lett. (9)

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett. 92(12), 123512 (2008).
[CrossRef]

R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Appl. Phys. Lett. 90(17), 173125 (2007).
[CrossRef]

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 98(16), 163105 (2011).
[CrossRef]

S. Tomic, A. Marti, E. Antolin, and A. Luque, “On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells,” Appl. Phys. Lett. 99(5), 053504 (2011).
[CrossRef]

P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, “Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells,” Appl. Phys. Lett. 101(23), 231101 (2012).
[CrossRef]

N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett. 100(17), 172111 (2012).
[CrossRef] [PubMed]

W.-H. Lin, K.-W. Wang, S.-W. Chang, M.-H. Shih, and S.-Y. Lin, “Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications,” Appl. Phys. Lett. 101(3), 031906 (2012).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, “Resistance to edge recombination in GaAs-based dots-in-a-well solar cells,” Appl. Phys. Lett. 95(26), 261106 (2009).
[CrossRef]

Energy & Environmental Science (1)

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, “Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells,” Energy & Environmental Science 5(3), 6233–6237 (2012).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

C.-C. Lin, M.-H. Tan, C.-P. Tsai, K.-Y. Chuang, and T. S. Lay, “Numerical Study of Quantum-Dot-Embedded Solar Cells,” IEEE J. Sel. Top. Quant. 19, 4000110 (2013).

IEEE Photonic Tech. L. (1)

W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, “Room-Temperature Electro-Luminescence of Type-II GaSb/GaAs Quantum Rings,” IEEE Photonic Tech. L. 24(14), 1203–1205 (2012).
[CrossRef]

J. Appl. Phys. (4)

K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration,” J. Appl. Phys. 112, 084510 (2012).

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[CrossRef]

J. Hwang, A. J. Martin, J. M. Millunchick, and J. D. Phillips, “Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion,” J. Appl. Phys. 111(7), 074514 (2012).
[CrossRef]

Nano Lett. (1)

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[CrossRef]

Phys. Rev. B (1)

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78(20), 205321 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[CrossRef] [PubMed]

A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, Í. Ramiro, C. R. Stanley, and A. Luque, “Voltage recovery in intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 98, 240–244 (2012).
[CrossRef]

Thin Solid Films (1)

A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells,” Thin Solid Films 516(20), 6716–6722 (2008).
[CrossRef]

Other (3)

S. M. Hubbard, C. G. Bailey, R. Aguinaldo, S. Polly, D. V. Forbes, and R. P. Raffaelle, “Characterization of quantum dot enhanced solar cells for concentrator photovoltaics,” in Photovoltaic Specialists Conference (PVSC),200934th IEEE(IEEE, Philadelphia, PA, 2009), 000090–000095.
[CrossRef]

T. Tayagaki, N. Usami, P. Wugen, Y. Hoshi, and Y. Kanemitsu, “Enhanced carrier extraction under strong light irradiation in Ge/Si type-II quantum dot solar cells,” in Photovoltaic Specialists Conference (PVSC),201238th IEEE(IEEE, Austin, TX, 2012), pp. 003200–003203.
[CrossRef]

J. Nelson, The Physics of Solar Cells (World Scientific, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The band diagram of a GaSb QR in the GaAs material. The electron wavefunction (red) has less overlap with the hole wavefunction (blue), which would be beneficial for less recombination. Two bands of absorption are created: one for GaAs host material (GaAs) and the other for GaSb QR (GaSb), and the latter can effectively increase the photo-current of the device.

Fig. 2
Fig. 2

The EQE spectral response of the reference and GaSb QR samples. The inset is the PL data of the QR under 10K and room temperature.

Fig. 3
Fig. 3

The current-voltage (IV) characteristics of the reference and GaSb QR samples under (a) one-Sun and (b) 60 Sun.

Fig. 4
Fig. 4

(a) The power conversion efficiencies of the reference and GaSb QR samples versus different concentration factor. The dashed lines are for eye-guiding only. (b) The VOC under the same condition.

Tables (1)

Tables Icon

Table 1 Detailed Epitaxial Structures of Reference and GaSb QR Samples

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V OC (X)= n k B T q ln( X J SC J 0 +1 ) V OC (1)+ n k B T q lnX( 1 0 0 1 )

Metrics