Abstract

GaAs nanowires (NWs) offer the possibility of decoupling light absorption from charge transport for high-performance photovoltaic (PV) devices. However, it is still an open question as to whether these devices can exceed the Shockley-Queisser efficiency limit for single-junction PV. In this work, single standing GaAs-based nanowire solar cells in both radial and vertical junction configurations is analyzed and compared to a planar thin-film design. By using a self-consistent, electrical-optically coupled 3D simulator, we show the design principles for nanowire and planar solar cells are significantly different; nanowire solar cells are vulnerable to surface and contact recombination, while planar solar cells suffer significant losses due to imperfect backside mirror reflection. Overall, the ultimate efficiency of the GaAs nanowire solar cell with radial and vertical junction is not expected to exceed that of the thin-film design, with both staying below the Shockley-Queisser limit.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001).
    [CrossRef]
  2. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [CrossRef] [PubMed]
  3. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510 (1961).
    [CrossRef]
  4. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 2(3), 303–311 (2012).
    [CrossRef]
  5. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013).
    [CrossRef]
  6. B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
    [CrossRef]
  7. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
    [CrossRef]
  8. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
    [CrossRef]
  9. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
    [CrossRef] [PubMed]
  10. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  11. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [CrossRef] [PubMed]
  12. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.
  13. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
    [CrossRef] [PubMed]
  14. E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
    [CrossRef]
  15. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
    [CrossRef]
  16. E. C. Garnett, C. Peters, M. Brongersma, Y. Cui, and M. McGehee, “Silicon nanowire hybrid photovoltaics,” in 2010 35th IEEE Photovoltaic Specialists Conference, (Ieee, 2010), 000934–000938.
    [CrossRef]
  17. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Scientific Reports 3, 1546 (2013).
  18. J. Nelson, The Physics of Solar Cells, Series on Properties of Semiconductor Materials (Imperial College Press, 2003), Vol. 50, pp. 363–363.
  19. F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904 (1974).
    [CrossRef]
  20. E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “A great solar cell also needs to be a great LED: External fluorescence leads to new efficiency record,” AIP Conf. Proc. 9, 9-11 (2013).
  21. X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the Shockley-Queisser limit in GaAs solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 002117–002121.
    [CrossRef]
  22. U. Rau, “Superposition and Reciprocity in the Electroluminescence and Photoluminescence of Solar Cells,” IEEE Journal of Photovoltaics 2(2), 169–172 (2012).
    [CrossRef]
  23. X. Wang and M. S. Lundstrom, “On the Use of Rau's Reciprocity to Deduce External Radiative Efficiency in Solar Cells,” IEEE Journal of Photovoltaics, 1–6 (2013).
  24. A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris) 31(6), 1–235 (2007).
    [CrossRef]
  25. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  26. S. C. H. Allen Taflove, Computational Electrodynamics, Artech House Antennas and Propagation Library (Artech House, 2005).
  27. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  28. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), Handbook of Optics (Mcgraw-hill, 2009).
  29. Synopsys Sentaurus Semiconductor TCAD Software, East Middlefield Road, Mountain View, CA 94043 USA.
  30. R. Pierret, Semiconductor device fundamentals (Addison-Wesley Publishing Company, 1996).
  31. W. van Roosbroeck and W. Shockley, “Photon-Radiative Recombination of Electrons and Holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
    [CrossRef]
  32. S. M. Durbin, J. L. Gray, R. K. Ahrenkiel, and D. H. Levi, “Numerical modeling of the influence of photon recycling on lifetime measurements,” in IEEE Phovoltaic Specialists Conference, (IEEE, 1993), 628–632.
    [CrossRef]
  33. S. M. Durbin and J. L. Gray, “Numerical modeling of photon recycling in solar cells,” IEEE Trans. Electron. Dev. 41(2), 239–245 (1994).
    [CrossRef]
  34. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
    [CrossRef]
  35. D. N. Wright, E. S. Marstein, and A. Holt, “Double layer anti-reflective coatings for silicon solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2005), 1237–1240.
    [CrossRef]
  36. X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 3(2), 737–744 (2013).
    [CrossRef]
  37. J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)
  38. S. H. Demtsu and J. R. Sites, “Effect of back-contact barrier on thin-film CdTe solar cells,” Thin Solid Films 510(1-2), 320–324 (2006).
    [CrossRef]
  39. G. Lush and M. Lundstrom, “Thin film approaches for high-efficiency III-V cells,” Solar Cells. 30(1-4), 337–344 (1991).
    [CrossRef]

2013 (5)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013).
[CrossRef]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Scientific Reports 3, 1546 (2013).

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 3(2), 737–744 (2013).
[CrossRef]

2012 (3)

U. Rau, “Superposition and Reciprocity in the Electroluminescence and Photoluminescence of Solar Cells,” IEEE Journal of Photovoltaics 2(2), 169–172 (2012).
[CrossRef]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 2(3), 303–311 (2012).
[CrossRef]

2011 (1)

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[CrossRef]

2010 (2)

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

2009 (1)

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

2008 (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

2007 (1)

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris) 31(6), 1–235 (2007).
[CrossRef]

2006 (1)

S. H. Demtsu and J. R. Sites, “Effect of back-contact barrier on thin-film CdTe solar cells,” Thin Solid Films 510(1-2), 320–324 (2006).
[CrossRef]

2005 (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

2001 (1)

M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001).
[CrossRef]

1998 (1)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

1994 (1)

S. M. Durbin and J. L. Gray, “Numerical modeling of photon recycling in solar cells,” IEEE Trans. Electron. Dev. 41(2), 239–245 (1994).
[CrossRef]

1991 (2)

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

G. Lush and M. Lundstrom, “Thin film approaches for high-efficiency III-V cells,” Solar Cells. 30(1-4), 337–344 (1991).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1974 (1)

F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904 (1974).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

1954 (1)

W. van Roosbroeck and W. Shockley, “Photon-Radiative Recombination of Electrons and Holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
[CrossRef]

Aagesen, M.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Adachi, M. M.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Scientific Reports 3, 1546 (2013).

Agrawal, R.

J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)

Ahrenkiel, R. K.

S. M. Durbin, J. L. Gray, R. K. Ahrenkiel, and D. H. Levi, “Numerical modeling of the influence of photon recycling on lifetime measurements,” in IEEE Phovoltaic Specialists Conference, (IEEE, 1993), 628–632.
[CrossRef]

Alam, M. A.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 3(2), 737–744 (2013).
[CrossRef]

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the Shockley-Queisser limit in GaAs solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 002117–002121.
[CrossRef]

Anantram, M. P.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Scientific Reports 3, 1546 (2013).

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Atwater, H. A.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Brongersma, M. L.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[CrossRef]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Carter, N.

J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cui, Y.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

David, A.

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris) 31(6), 1–235 (2007).
[CrossRef]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Demichel, O.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Demtsu, S. H.

S. H. Demtsu and J. R. Sites, “Effect of back-contact barrier on thin-film CdTe solar cells,” Thin Solid Films 510(1-2), 320–324 (2006).
[CrossRef]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013).
[CrossRef]

Durbin, S. M.

S. M. Durbin and J. L. Gray, “Numerical modeling of photon recycling in solar cells,” IEEE Trans. Electron. Dev. 41(2), 239–245 (1994).
[CrossRef]

S. M. Durbin, J. L. Gray, R. K. Ahrenkiel, and D. H. Levi, “Numerical modeling of the influence of photon recycling on lifetime measurements,” in IEEE Phovoltaic Specialists Conference, (IEEE, 1993), 628–632.
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013).
[CrossRef]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Filler, M. A.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Fontcuberta i Morral, A.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[CrossRef]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Gray, J. L.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 3(2), 737–744 (2013).
[CrossRef]

S. M. Durbin and J. L. Gray, “Numerical modeling of photon recycling in solar cells,” IEEE Trans. Electron. Dev. 41(2), 239–245 (1994).
[CrossRef]

S. M. Durbin, J. L. Gray, R. K. Ahrenkiel, and D. H. Levi, “Numerical modeling of the influence of photon recycling on lifetime measurements,” in IEEE Phovoltaic Specialists Conference, (IEEE, 1993), 628–632.
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013).
[CrossRef]

M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001).
[CrossRef]

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Hages, C. J.

J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)

Heiss, M.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Higashi, G. S.

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013).
[CrossRef]

Holm, J. V.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Holt, A.

D. N. Wright, E. S. Marstein, and A. Holt, “Double layer anti-reflective coatings for silicon solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2005), 1237–1240.
[CrossRef]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Joannopoulos, J. D. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Jørgensen, H. I.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Karim, K. S.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Scientific Reports 3, 1546 (2013).

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
[CrossRef]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.

Kelzenberg, M. D.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.

Khan, M. R.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 3(2), 737–744 (2013).
[CrossRef]

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the Shockley-Queisser limit in GaAs solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 002117–002121.
[CrossRef]

Kizilyalli, I. C.

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
[CrossRef]

Krogstrup, P.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Kurtz, S. R.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 2(3), 303–311 (2012).
[CrossRef]

Lafayette, W.

J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)

Levi, D. H.

S. M. Durbin, J. L. Gray, R. K. Ahrenkiel, and D. H. Levi, “Numerical modeling of the influence of photon recycling on lifetime measurements,” in IEEE Phovoltaic Specialists Conference, (IEEE, 1993), 628–632.
[CrossRef]

Lewis, N. S.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.

Lundstrom, M.

G. Lush and M. Lundstrom, “Thin film approaches for high-efficiency III-V cells,” Solar Cells. 30(1-4), 337–344 (1991).
[CrossRef]

J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the Shockley-Queisser limit in GaAs solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 002117–002121.
[CrossRef]

Lundstrom, M. S.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 3(2), 737–744 (2013).
[CrossRef]

X. Wang and M. S. Lundstrom, “On the Use of Rau's Reciprocity to Deduce External Radiative Efficiency in Solar Cells,” IEEE Journal of Photovoltaics, 1–6 (2013).

Lush, G.

G. Lush and M. Lundstrom, “Thin film approaches for high-efficiency III-V cells,” Solar Cells. 30(1-4), 337–344 (1991).
[CrossRef]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Marstein, E. S.

D. N. Wright, E. S. Marstein, and A. Holt, “Double layer anti-reflective coatings for silicon solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2005), 1237–1240.
[CrossRef]

Mazur, E.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

McGehee, M. D.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[CrossRef]

Miller, O. D.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 2(3), 303–311 (2012).
[CrossRef]

Moore, J.

J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)

Munday, J. N.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Nie, H.

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
[CrossRef]

Nygard, J.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Putnam, M. C.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

Rau, U.

U. Rau, “Superposition and Reciprocity in the Electroluminescence and Photoluminescence of Solar Cells,” IEEE Journal of Photovoltaics 2(2), 169–172 (2012).
[CrossRef]

Reinhardt, F.

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

W. van Roosbroeck and W. Shockley, “Photon-Radiative Recombination of Electrons and Holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
[CrossRef]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Sites, J. R.

S. H. Demtsu and J. R. Sites, “Effect of back-contact barrier on thin-film CdTe solar cells,” Thin Solid Films 510(1-2), 320–324 (2006).
[CrossRef]

Spruytte, S. G.

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
[CrossRef]

Stern, F.

F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904 (1974).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.

Twist, R.

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
[CrossRef]

van Roosbroeck, W.

W. van Roosbroeck and W. Shockley, “Photon-Radiative Recombination of Electrons and Holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
[CrossRef]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wang, X.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 3(2), 737–744 (2013).
[CrossRef]

X. Wang and M. S. Lundstrom, “On the Use of Rau's Reciprocity to Deduce External Radiative Efficiency in Solar Cells,” IEEE Journal of Photovoltaics, 1–6 (2013).

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the Shockley-Queisser limit in GaAs solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 002117–002121.
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013).
[CrossRef]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Woodall, J. M.

F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904 (1974).
[CrossRef]

Wright, D. N.

D. N. Wright, E. S. Marstein, and A. Holt, “Double layer anti-reflective coatings for silicon solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2005), 1237–1240.
[CrossRef]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yablonovitch, E.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 2(3), 303–311 (2012).
[CrossRef]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, P.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Ann. Phys. (Paris) (1)

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris) 31(6), 1–235 (2007).
[CrossRef]

Annu. Rev. Mater. Res. (1)

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

IEEE Journal of Photovoltaics (2)

U. Rau, “Superposition and Reciprocity in the Electroluminescence and Photoluminescence of Solar Cells,” IEEE Journal of Photovoltaics 2(2), 169–172 (2012).
[CrossRef]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 2(3), 303–311 (2012).
[CrossRef]

IEEE Journal of Photovoltaics (1)

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics 3(2), 737–744 (2013).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

S. M. Durbin and J. L. Gray, “Numerical modeling of photon recycling in solar cells,” IEEE Trans. Electron. Dev. 41(2), 239–245 (1994).
[CrossRef]

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

J. Appl. Phys. (2)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510 (1961).
[CrossRef]

F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904 (1974).
[CrossRef]

Nano Lett. (3)

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Phys. Rev. (1)

W. van Roosbroeck and W. Shockley, “Photon-Radiative Recombination of Electrons and Holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
[CrossRef]

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (2)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013).
[CrossRef]

M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001).
[CrossRef]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Scientific Reports (1)

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Scientific Reports 3, 1546 (2013).

Solar Cells. (1)

G. Lush and M. Lundstrom, “Thin film approaches for high-efficiency III-V cells,” Solar Cells. 30(1-4), 337–344 (1991).
[CrossRef]

Thin Solid Films (1)

S. H. Demtsu and J. R. Sites, “Effect of back-contact barrier on thin-film CdTe solar cells,” Thin Solid Films 510(1-2), 320–324 (2006).
[CrossRef]

Other (14)

J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)

S. M. Durbin, J. L. Gray, R. K. Ahrenkiel, and D. H. Levi, “Numerical modeling of the influence of photon recycling on lifetime measurements,” in IEEE Phovoltaic Specialists Conference, (IEEE, 1993), 628–632.
[CrossRef]

D. N. Wright, E. S. Marstein, and A. Holt, “Double layer anti-reflective coatings for silicon solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2005), 1237–1240.
[CrossRef]

S. C. H. Allen Taflove, Computational Electrodynamics, Artech House Antennas and Propagation Library (Artech House, 2005).

X. Wang and M. S. Lundstrom, “On the Use of Rau's Reciprocity to Deduce External Radiative Efficiency in Solar Cells,” IEEE Journal of Photovoltaics, 1–6 (2013).

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), Handbook of Optics (Mcgraw-hill, 2009).

Synopsys Sentaurus Semiconductor TCAD Software, East Middlefield Road, Mountain View, CA 94043 USA.

R. Pierret, Semiconductor device fundamentals (Addison-Wesley Publishing Company, 1996).

J. Nelson, The Physics of Solar Cells, Series on Properties of Semiconductor Materials (Imperial College Press, 2003), Vol. 50, pp. 363–363.

E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “A great solar cell also needs to be a great LED: External fluorescence leads to new efficiency record,” AIP Conf. Proc. 9, 9-11 (2013).

X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the Shockley-Queisser limit in GaAs solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 002117–002121.
[CrossRef]

E. C. Garnett, C. Peters, M. Brongersma, Y. Cui, and M. McGehee, “Silicon nanowire hybrid photovoltaics,” in 2010 35th IEEE Photovoltaic Specialists Conference, (Ieee, 2010), 000934–000938.
[CrossRef]

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
[CrossRef]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Electro-optically coupled simulation framework flowchart, suitable for incorporating photon recycling effects into a PV device simulation in a self-consistent fashion.

Fig. 2
Fig. 2

(a) Baseline single nanowire solar cell geometry with a radial junction; (b) Absorptivity vs. incident wavelength for the baseline single nanowire solar cell.

Fig. 3
Fig. 3

Three important quantities are spatially resolved with wave optics simulation: (a) Carrier generation rate under AM1.5G. (b) Spontaneous emission enhancement with respect to a homogeneous environment. (c) Spatially resolved photon recycling probability.

Fig. 4
Fig. 4

With radial junction, (a) Electron current flow streamline at JSC. (b) Hole current flow streamline at JSC. (c) Benchmark single nanowire solar cell light and dark IV.

Fig. 5
Fig. 5

With no minority carrier deflections at both contacts, performances for various surface recombination velocities are displayed. (a) JSC and VOC. (b) Percentage of each major loss mechanism at VOC.

Fig. 6
Fig. 6

With complete minority carrier deflection at both contacts, performances for various surface recombination velocities are displayed. (a) JSC and VOC. (b) Percentage of each major loss mechanism at VOC.

Fig. 7
Fig. 7

With vertical junction, (a) Device geometry. (b) Electron current flow streamline at JSC. (c) Hole current flow streamline at JSC.

Fig. 8
Fig. 8

With no minority carrier deflections at both contacts, performances for various surface recombination velocities are displayed. (a) JSC and VOC. (b) Percentage of each major loss mechanism at VOC.

Fig. 9
Fig. 9

With complete minority carrier deflections at both contacts, performances for various surface recombination velocities are displayed. (a) JSC and VOC. (b) Percentage of each major loss mechanism at VOC.

Fig. 10
Fig. 10

(a) Thin-film solar cell geometry. (b) Illustration of photon recycling and emission inside a thin-film solar cell.

Fig. 11
Fig. 11

With bulk SRH lifetime at 1 us, performances for various backside mirror reflectivities are displayed. (a) JSC and VOC. (b) Percentage of each major loss mechanism at VOC.

Tables (2)

Tables Icon

Table 1 Key baseline material parametersa

Tables Icon

Table 2 Performance comparison for various III-V single-junction solar cell types under 1-Sun, where shaded rows are numerical predictions in this study.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P a b s = 0.5 ω | E | 2 i m a g ( ϵ ) ,
R e m i t ( V = 0 ) = R e m i t ( v ) d v = 8 π v 2 n 2 c 2 α ( v ) e ( h v / k T ) 1 d v ,
R e m i t ( V ) = R e m i t ( V = 0 ) e q V / k T .

Metrics