Abstract

It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray’s path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).
  2. P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 13.
  3. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [CrossRef] [PubMed]
  4. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4), A673–A685 (2011).
    [CrossRef] [PubMed]
  5. W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
    [CrossRef]
  6. D. Moore, G. R. Schmidt, and B. Unger, “Concentrated photovoltaic stepped planar light guide,” in International Optical Design Conference, OSA Technical Digest (CD) (OSA, 2010), paper JMB46P.
  7. O. Selimoglu and R. Turan, “Exploration of the horizontally staggered light guides for high concentration CPV applications,” Opt. Express 20(17), 19137–19147 (2012).
    [CrossRef] [PubMed]
  8. S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a seasonal tracker,” Appl. Opt. 51(28), 6848–6854 (2012).
    [CrossRef] [PubMed]
  9. W. D. Lubitz, “Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels,” Appl. Energy 88(5), 1710–1719 (2011).
    [CrossRef]
  10. D. Cooke, “Single vs. dual axis solar tracking,” Alternate Energy eMagazine (2011).
  11. T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/phenanthrene-derivative host-guest systems: rheological, optical and thermal properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
    [CrossRef]
  12. T. Hanemann, J. Böhm, C. Müller, and E. Ritzhaupt-Kleissl, “Refractive index modification of polymers using nanosized dopants,” Proc. SPIE 6992, 69920D (2008).
    [CrossRef]
  13. M. Ponting, A. Hiltner, and E. Baer, “Polymer nanostructures by forced assembly: process, structure, and properties,” Macromol. Symp. 294(1), 19–32 (2010).
    [CrossRef]
  14. S. Ji, M. Ponting, R. S. Lepkowicz, A. Rosenberg, R. Flynn, G. Beadie, and E. Baer, “A bio-inspired polymeric gradient refractive index (GRIN) human eye lens,” Opt. Express 20(24), 26746–26754 (2012).
    [CrossRef] [PubMed]
  15. B. E. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley, 1991), Vol. 22, p. 22.
  16. Y. Koike, E. Nihel, N. Tanio, and Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymers,” Appl. Opt. 29(18), 2686–2691 (1990).
    [CrossRef] [PubMed]
  17. http://www.polymerplus.net/

2012 (3)

2011 (3)

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

W. D. Lubitz, “Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels,” Appl. Energy 88(5), 1710–1719 (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4), A673–A685 (2011).
[CrossRef] [PubMed]

2010 (2)

M. Ponting, A. Hiltner, and E. Baer, “Polymer nanostructures by forced assembly: process, structure, and properties,” Macromol. Symp. 294(1), 19–32 (2010).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[CrossRef] [PubMed]

2008 (1)

T. Hanemann, J. Böhm, C. Müller, and E. Ritzhaupt-Kleissl, “Refractive index modification of polymers using nanosized dopants,” Proc. SPIE 6992, 69920D (2008).
[CrossRef]

2007 (1)

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/phenanthrene-derivative host-guest systems: rheological, optical and thermal properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

1990 (1)

Baer, E.

S. Ji, M. Ponting, R. S. Lepkowicz, A. Rosenberg, R. Flynn, G. Beadie, and E. Baer, “A bio-inspired polymeric gradient refractive index (GRIN) human eye lens,” Opt. Express 20(24), 26746–26754 (2012).
[CrossRef] [PubMed]

M. Ponting, A. Hiltner, and E. Baer, “Polymer nanostructures by forced assembly: process, structure, and properties,” Macromol. Symp. 294(1), 19–32 (2010).
[CrossRef]

Beadie, G.

Böhm, J.

T. Hanemann, J. Böhm, C. Müller, and E. Ritzhaupt-Kleissl, “Refractive index modification of polymers using nanosized dopants,” Proc. SPIE 6992, 69920D (2008).
[CrossRef]

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/phenanthrene-derivative host-guest systems: rheological, optical and thermal properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Bouchard, S.

Flynn, R.

Ford, J. E.

Hallas, J. M.

Hanemann, T.

T. Hanemann, J. Böhm, C. Müller, and E. Ritzhaupt-Kleissl, “Refractive index modification of polymers using nanosized dopants,” Proc. SPIE 6992, 69920D (2008).
[CrossRef]

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/phenanthrene-derivative host-guest systems: rheological, optical and thermal properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Haußelt, J.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/phenanthrene-derivative host-guest systems: rheological, optical and thermal properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Hiltner, A.

M. Ponting, A. Hiltner, and E. Baer, “Polymer nanostructures by forced assembly: process, structure, and properties,” Macromol. Symp. 294(1), 19–32 (2010).
[CrossRef]

Honnef, K.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/phenanthrene-derivative host-guest systems: rheological, optical and thermal properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Ji, S.

Karp, J. H.

Koike, Y.

Lepkowicz, R. S.

Lubitz, W. D.

W. D. Lubitz, “Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels,” Appl. Energy 88(5), 1710–1719 (2011).
[CrossRef]

Müller, C.

T. Hanemann, J. Böhm, C. Müller, and E. Ritzhaupt-Kleissl, “Refractive index modification of polymers using nanosized dopants,” Proc. SPIE 6992, 69920D (2008).
[CrossRef]

Nihel, E.

Ohtsuka, Y.

Ponting, M.

S. Ji, M. Ponting, R. S. Lepkowicz, A. Rosenberg, R. Flynn, G. Beadie, and E. Baer, “A bio-inspired polymeric gradient refractive index (GRIN) human eye lens,” Opt. Express 20(24), 26746–26754 (2012).
[CrossRef] [PubMed]

M. Ponting, A. Hiltner, and E. Baer, “Polymer nanostructures by forced assembly: process, structure, and properties,” Macromol. Symp. 294(1), 19–32 (2010).
[CrossRef]

Ritzhaupt-Kleissl, E.

T. Hanemann, J. Böhm, C. Müller, and E. Ritzhaupt-Kleissl, “Refractive index modification of polymers using nanosized dopants,” Proc. SPIE 6992, 69920D (2008).
[CrossRef]

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/phenanthrene-derivative host-guest systems: rheological, optical and thermal properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Rosenberg, A.

Selimoglu, O.

Shieh, W. C.

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

Su, G. D.

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

Tanio, N.

Thibault, S.

Tremblay, E. J.

Turan, R.

Appl. Energy (1)

W. D. Lubitz, “Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels,” Appl. Energy 88(5), 1710–1719 (2011).
[CrossRef]

Appl. Opt. (2)

Macromol. Mater. Eng. (1)

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/phenanthrene-derivative host-guest systems: rheological, optical and thermal properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Macromol. Symp. (1)

M. Ponting, A. Hiltner, and E. Baer, “Polymer nanostructures by forced assembly: process, structure, and properties,” Macromol. Symp. 294(1), 19–32 (2010).
[CrossRef]

Opt. Express (4)

Proc. SPIE (2)

T. Hanemann, J. Böhm, C. Müller, and E. Ritzhaupt-Kleissl, “Refractive index modification of polymers using nanosized dopants,” Proc. SPIE 6992, 69920D (2008).
[CrossRef]

W. C. Shieh and G. D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” Proc. SPIE 8108, 81080H (2011).
[CrossRef]

Other (6)

D. Moore, G. R. Schmidt, and B. Unger, “Concentrated photovoltaic stepped planar light guide,” in International Optical Design Conference, OSA Technical Digest (CD) (OSA, 2010), paper JMB46P.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics (Academic, 2004).

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 13.

D. Cooke, “Single vs. dual axis solar tracking,” Alternate Energy eMagazine (2011).

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley, 1991), Vol. 22, p. 22.

http://www.polymerplus.net/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Lateral view of the waveguide with the parameters used in Eqs. (1)(3).

Fig. 2
Fig. 2

Rays’ paths inside the waveguide for both systems. a) Graded-index waveguide and b) Homogeneous waveguide.

Fig. 3
Fig. 3

Number of backside interactions for different angles coupled in the waveguide at position P = 18 mm.

Fig. 4
Fig. 4

Variation of the index along the z axis.

Fig. 5
Fig. 5

Position of the sun versus the concentrator at different moments during the year.

Fig. 6
Fig. 6

Optical efficiency and related concentration factor for the graded-index waveguide concentrator tested in LightTools.

Fig. 7
Fig. 7

Refractive index modification of PMMA by the addition of benzoquinolin in the polymer matrix.

Fig. 8
Fig. 8

Technique developed by DARPA to fabricate GRIN lens made with polymer [17].

Tables (1)

Tables Icon

Table 1 Comparison of the optical efficiency for the same planar concentrators using f/3.19 lens in air. The only modification between both systems is the homogenous waveguide that is replaced by a graded-index waveguide (n = 1.491-1.55). An anti-reflection coating is used on the lens surface but Fresnel reflections are taken into account at other interfaces.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η decouple (P,Φ)= (1 1 C cylind.lens ) PtanΦ 2H
η position (P,Φ)=R× η decouple ×exp( αP cosΦ )
η total = P 0 Φ max η position (P,Φ) (Lr) 2r
Φ max =2[ θ+arctan( 1 2n f # ) ]
n(z)= n 0 n 0 A 2 z 2

Metrics