Abstract

The optical design presented here has been done in order to achieve superior optical performance in comparison with the state-of-the-art Fresnel CPV systems. The design consists of a Photovoltaic Concentrator (CPV) comprising a Fresnel lens (F) as a Primary Optical Element (POE) and a dielectric solid RXI as a Secondary Optical Element (SOE), both with free-form surfaces (i.e. neither rotational nor linearly symmetric). It is the first time the RXI-type geometry has been applied to a CPV secondary. This concentrator has ultra-high CAP value ready to accommodate more efficient cells eventually to be developed and used commercially in future.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Luque, Solar Cells and Optics for Photovoltaic Concentration (Adam Hilger, 1989), pp. 205–238.
  2. P. Benítez and J. C. Miñano, “Concentrator optics for the next generation photovoltaics,” in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, A. Marti and A. Luque, eds. (Taylor and Francis, 2004), Chap. 13, pp. 285–325.
  3. E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
    [CrossRef]
  4. J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, “Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics,” Appl. Phys. Lett. 86(7), 073508 (2005).
    [CrossRef]
  5. A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
    [CrossRef]
  6. J. M. Olson, “Simulation of nonuniform irradiance in multijunction III-V solar cells,” in 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 201–204.
  7. S. Kurtz and M. J. O’Neill, “Estimating and controlling chromatic aberration losses for two-junction, two terminal devices in refractive concentrator systems,” in Proceedings of 25th Photovoltaic Specialists Conference (Washington, DC, 1996), pp. 361–367.
  8. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
    [CrossRef]
  9. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics, 181–281(Elsevier-Academic Press, New York, 2005).
  10. J. C. Miñano, J. C. Gonźlez, and P. Benítez, “A high-gain, compact, nonimaging concentrator: RXI,” Appl. Opt. 34(34), 7850–7856 (1995).
    [CrossRef] [PubMed]
  11. J. C. Miñano, M. Hernandez, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).
  12. G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
    [CrossRef]
  13. P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18(S1), A25–A40 (2010).
    [CrossRef]
  14. M. Buljan, P. Benítez, R. Mohedano, and J. C. Miñano, “Improving performances of Fresnel CPV systems: Fresnel RXI Köhler concentrator,” in Proceedings of 25th EU PVSEC, 5th World Conference on Photovoltaic Energy Conversion (Valencia, 2010), pp. 930–936.
  15. J. C. Miñano, P. Benítez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamaría, “Free-form optics for Fresnel-lens-based photovoltaic concentrators,” Opt. Express 21(S3), A494–A502 (2013).
    [CrossRef] [PubMed]

2013

2011

G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
[CrossRef]

2010

2009

A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
[CrossRef]

2006

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

2005

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, “Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics,” Appl. Phys. Lett. 86(7), 073508 (2005).
[CrossRef]

J. C. Miñano, M. Hernandez, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).

2004

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

1995

Angel, J. R.

G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
[CrossRef]

Benítez, P.

Bett, A. W.

A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
[CrossRef]

Blen, J.

J. C. Miñano, M. Hernandez, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Braun, A.

A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
[CrossRef]

Buljan, M.

Butel, G.

G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
[CrossRef]

Chaves, J.

P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18(S1), A25–A40 (2010).
[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Coughenour, B.

G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
[CrossRef]

Cvetkovic, A.

Dross, O.

J. C. Miñano, M. Hernandez, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Feuermann, D.

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, “Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics,” Appl. Phys. Lett. 86(7), 073508 (2005).
[CrossRef]

Gonzlez, J. C.

Gordon, J. M.

A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
[CrossRef]

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, “Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics,” Appl. Phys. Lett. 86(7), 073508 (2005).
[CrossRef]

Guter, W.

A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
[CrossRef]

Hernandez, M.

J. C. Miñano, M. Hernandez, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Hernández, M.

Hirsch, B.

A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
[CrossRef]

Katz, E. A.

A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
[CrossRef]

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, “Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics,” Appl. Phys. Lett. 86(7), 073508 (2005).
[CrossRef]

Kennedy, C.

G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
[CrossRef]

Macleod, H.

G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
[CrossRef]

Miñano, J. C.

Mohedano, R.

J. C. Miñano, P. Benítez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamaría, “Free-form optics for Fresnel-lens-based photovoltaic concentrators,” Opt. Express 21(S3), A494–A502 (2013).
[CrossRef] [PubMed]

P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18(S1), A25–A40 (2010).
[CrossRef]

J. C. Miñano, M. Hernandez, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Olbert, B.

G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
[CrossRef]

Santamaría, A.

J. C. Miñano, P. Benítez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamaría, “Free-form optics for Fresnel-lens-based photovoltaic concentrators,” Opt. Express 21(S3), A494–A502 (2013).
[CrossRef] [PubMed]

J. C. Miñano, M. Hernandez, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).

Tassew, W.

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, “Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics,” Appl. Phys. Lett. 86(7), 073508 (2005).
[CrossRef]

Zamora, P.

Appl. Opt.

Appl. Phys. Lett.

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, “Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics,” Appl. Phys. Lett. 86(7), 073508 (2005).
[CrossRef]

Opt. Eng.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Opt. Express

Proc. SPIE

J. C. Miñano, M. Hernandez, P. Benítez, J. Blen, O. Dross, R. Mohedano, and A. Santamaría, “Free-form integrator array optics,” Proc. SPIE 5942, 59420C (2005).

G. Butel, B. Coughenour, H. Macleod, C. Kennedy, B. Olbert, and J. R. Angel, “Second-surface silvered glass solar mirrors of very high reflectance,” Proc. SPIE 8108, 81080L (2011).
[CrossRef]

Prog. Photovolt. Res. Appl.

E. A. Katz, J. M. Gordon, and D. Feuermann, “Effects of ultra-high flux and intensity distribution in multi-junction solar cells,” Prog. Photovolt. Res. Appl. 14(4), 297–303 (2006).
[CrossRef]

Sol. Energy Mater. Sol. Cells

A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, “Localized radiation effects on tunnel diode transitions in multi-junction concentrator solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1692–1695 (2009).
[CrossRef]

Other

J. M. Olson, “Simulation of nonuniform irradiance in multijunction III-V solar cells,” in 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 201–204.

S. Kurtz and M. J. O’Neill, “Estimating and controlling chromatic aberration losses for two-junction, two terminal devices in refractive concentrator systems,” in Proceedings of 25th Photovoltaic Specialists Conference (Washington, DC, 1996), pp. 361–367.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics, 181–281(Elsevier-Academic Press, New York, 2005).

A. Luque, Solar Cells and Optics for Photovoltaic Concentration (Adam Hilger, 1989), pp. 205–238.

P. Benítez and J. C. Miñano, “Concentrator optics for the next generation photovoltaics,” in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, A. Marti and A. Luque, eds. (Taylor and Francis, 2004), Chap. 13, pp. 285–325.

M. Buljan, P. Benítez, R. Mohedano, and J. C. Miñano, “Improving performances of Fresnel CPV systems: Fresnel RXI Köhler concentrator,” in Proceedings of 25th EU PVSEC, 5th World Conference on Photovoltaic Energy Conversion (Valencia, 2010), pp. 930–936.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

3D Köhler freeform FRXI concentrator: (Left) Scheme of one Köhler integrator unit; (Right) Ray trace showing FRXI performance for a normal incidence: a plane wavefront emulating the sun has been traced in order to show how this beam is split and focused on the four SOE facets to be spread afterwards and produce uniform irradiance on the solar cell. This will be valid for every ray within the designed acceptance angle.

Fig. 2
Fig. 2

A 2D diagonal profile of the RXI lens (SOE) together with two pairs of the wavefronts WF1i and WF3i used for the “seed” curve design together with the “seed” curve.

Fig. 3
Fig. 3

Calculation of SMS chains (one unit, one quarter of SOE). Because of the symmetry, defining one unit we fully define optical elements of the FRXI system.

Fig. 4
Fig. 4

Irradiance profile on the solar cell (FRXI_m) when the sun is on-axis and the solar spectrum is restricted to: (Left) the top subcell range (360-690nm), (Middle) the middle subcell range (690-900nm), (Right) the bottom subcell range (900-1,800nm). Simulation parameters are described with detail in the beginning of Section 3. (a.u. = arbitrary units)

Fig. 5
Fig. 5

(Left) Cross section of the SOEs of the Fresnel-based concentrators to compare. Cross section of their corresponding cells which should be centered at the origin is shown displaced to make them visible; (Right) CAP values. Sample figure adapted from [14, 15].

Tables (3)

Tables Icon

Table 1 Geometrical concentration, monochromatic acceptance angle α, monochromatic CAP, effective acceptance angle α*, effective CAP* of three described concentrators.

Tables Icon

Table 2 Optical efficiency without the AR coating on POE and SOE front surfaces.

Tables Icon

Table 3 The f-number and geometrical concentration of the selected Fresnel-based concentrators under comparison. All have the same square POE entry aperture (625cm2) and acceptance angle (α = ± 1°).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CAP= C g sin( α )

Metrics