Abstract

A prototype concentrator photovoltaic (CPV) module with high solar concentration, an added low-cost solar cell, and an adjoining multi-junction solar cell is fabricated and experimentally demonstrated. In the present CPV module, the low cost solar cell captures diffuse solar radiation penetrating the concentrator lens and the multi-junction cell captures concentrated direct solar radiation. On-sun test results show that the electricity generated by a Fresnel lens-based CPV module with an additional crystalline silicon solar cell is greater than that for a conventional CPV module by a factor of 1.44 when the mean ratio of diffuse normal irradiation to global normal irradiation at the module aperture is 0.4. Several fundamental optical characteristics are presented for the present module.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Sharp Corporation, “Sharp develops concentrator solar cell with world's highest conversion efficiency of 44.4%,” http://sharp-world.com/corporate/news/130614.html (2013).
  2. Amonix Inc, “Amonix achieves world record for PV module efficiency in test at NREL,” http://amonix.com/pressreleases/amonix-achieves-world-record-pv-module-efficiency-test-nrel (2013).
  3. P. Benitez, J. C. Miñano, and R. Alvarez, “Photovoltaic concentrator with auxiliary cells collecting diffuse radiation, US patent application publication,” Pub. No.: US 2010/0126556 A1 (2010).
  4. P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18(S1), A25–A40 (2010).
    [CrossRef]
  5. K. Araki, T. Yano, and Y. Kuroda, “30 kW concentrator photovoltaic system using dome-shaped Fresnel lenses,” Opt. Express 18(S1), A53–A63 (2010).
    [CrossRef]
  6. V. D. Rumyantsev, “Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells,” Opt. Express 18(S1), A17–A24 (2010).
    [CrossRef] [PubMed]
  7. J. Jaus, A. W. Bett, H. Reinecke, and E. R. Weber, “Reflective secondary optical elements for Fresnel lens based concentrator modules,” Prog. Photovoltaics 19(5), 580–590 (2011).
    [CrossRef]
  8. A. Neumann, A. Witzke, S. A. Jones, and G. Schmitt, “Representative terrestrial solar brightness profiles,” Trans. ASME J. Sol. Energy Eng. 124(2), 198–204 (2002).
    [CrossRef]
  9. D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
    [CrossRef]

2011 (1)

J. Jaus, A. W. Bett, H. Reinecke, and E. R. Weber, “Reflective secondary optical elements for Fresnel lens based concentrator modules,” Prog. Photovoltaics 19(5), 580–590 (2011).
[CrossRef]

2010 (3)

2003 (1)

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[CrossRef]

2002 (1)

A. Neumann, A. Witzke, S. A. Jones, and G. Schmitt, “Representative terrestrial solar brightness profiles,” Trans. ASME J. Sol. Energy Eng. 124(2), 198–204 (2002).
[CrossRef]

Araki, K.

Benítez, P.

Bett, A. W.

J. Jaus, A. W. Bett, H. Reinecke, and E. R. Weber, “Reflective secondary optical elements for Fresnel lens based concentrator modules,” Prog. Photovoltaics 19(5), 580–590 (2011).
[CrossRef]

Buie, D.

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[CrossRef]

Buljan, M.

Chaves, J.

Cvetkovic, A.

Dey, C. J.

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[CrossRef]

Hernández, M.

Jaus, J.

J. Jaus, A. W. Bett, H. Reinecke, and E. R. Weber, “Reflective secondary optical elements for Fresnel lens based concentrator modules,” Prog. Photovoltaics 19(5), 580–590 (2011).
[CrossRef]

Jones, S. A.

A. Neumann, A. Witzke, S. A. Jones, and G. Schmitt, “Representative terrestrial solar brightness profiles,” Trans. ASME J. Sol. Energy Eng. 124(2), 198–204 (2002).
[CrossRef]

Kuroda, Y.

Miñano, J. C.

Mohedano, R.

Monger, A. G.

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[CrossRef]

Neumann, A.

A. Neumann, A. Witzke, S. A. Jones, and G. Schmitt, “Representative terrestrial solar brightness profiles,” Trans. ASME J. Sol. Energy Eng. 124(2), 198–204 (2002).
[CrossRef]

Reinecke, H.

J. Jaus, A. W. Bett, H. Reinecke, and E. R. Weber, “Reflective secondary optical elements for Fresnel lens based concentrator modules,” Prog. Photovoltaics 19(5), 580–590 (2011).
[CrossRef]

Rumyantsev, V. D.

Schmitt, G.

A. Neumann, A. Witzke, S. A. Jones, and G. Schmitt, “Representative terrestrial solar brightness profiles,” Trans. ASME J. Sol. Energy Eng. 124(2), 198–204 (2002).
[CrossRef]

Weber, E. R.

J. Jaus, A. W. Bett, H. Reinecke, and E. R. Weber, “Reflective secondary optical elements for Fresnel lens based concentrator modules,” Prog. Photovoltaics 19(5), 580–590 (2011).
[CrossRef]

Witzke, A.

A. Neumann, A. Witzke, S. A. Jones, and G. Schmitt, “Representative terrestrial solar brightness profiles,” Trans. ASME J. Sol. Energy Eng. 124(2), 198–204 (2002).
[CrossRef]

Yano, T.

Zamora, P.

Opt. Express (3)

Prog. Photovoltaics (1)

J. Jaus, A. W. Bett, H. Reinecke, and E. R. Weber, “Reflective secondary optical elements for Fresnel lens based concentrator modules,” Prog. Photovoltaics 19(5), 580–590 (2011).
[CrossRef]

Sol. Energy (1)

D. Buie, A. G. Monger, and C. J. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[CrossRef]

Trans. ASME J. Sol. Energy Eng. (1)

A. Neumann, A. Witzke, S. A. Jones, and G. Schmitt, “Representative terrestrial solar brightness profiles,” Trans. ASME J. Sol. Energy Eng. 124(2), 198–204 (2002).
[CrossRef]

Other (3)

Sharp Corporation, “Sharp develops concentrator solar cell with world's highest conversion efficiency of 44.4%,” http://sharp-world.com/corporate/news/130614.html (2013).

Amonix Inc, “Amonix achieves world record for PV module efficiency in test at NREL,” http://amonix.com/pressreleases/amonix-achieves-world-record-pv-module-efficiency-test-nrel (2013).

P. Benitez, J. C. Miñano, and R. Alvarez, “Photovoltaic concentrator with auxiliary cells collecting diffuse radiation, US patent application publication,” Pub. No.: US 2010/0126556 A1 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical configuration of a high concentration CPV module harvesting diffuse solar radiation [3].

Fig. 2
Fig. 2

Image of Fresnel-lens CPV module with additional low-cost solar cells.

Fig. 3
Fig. 3

(a) Schematic diagram of the test module. (b) Photograph of Si solar cell and triple-junction cell. Mirrors are not shown.

Fig. 4
Fig. 4

Time variation of the measured Pmax for the test module (outdoor test).

Fig. 5
Fig. 5

Relationship between short circuit current ratio of the built-in Si cell in the test module to the reference Si cell mounted on the same two-axis solar tracker. Short circuit current of the reference cell is corrected by γ.

Fig. 6
Fig. 6

Improvement factor vs. diffuse-to-total ratio for τ = 1.0, 1.5, 2.0, and 3.0.

Fig. 7
Fig. 7

Simulation of the boosted generated electricity ΔP vs. the diffuse-to-total ratio.

Fig. 8
Fig. 8

Effect of CSR on local concentration distribution for a built-in low cost cell with and without tracking angle error. The inset shows the angular solar intensity profile based on the literature [9]. The full spectrum analysis is based on AM1.5D + circumsolar standard solar spectrum and the optical properties of PMMA.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η CPV+ = η opt_CPV η cell_CPV DNI+ η opt_PV η cell_PV (GNIDNI) GNI ,
η CPV = η opt_CPV η cell_CPV DNI GNI .
f= η CPV+ η CPV η CPV = η opt_PV η cell_PV η opt_CPV η cell_CPV GNIDNI DNI .
f= γ τ( 1γ ) ,
τ= η opt_CPV η cell_CPV η opt_PV η cell_PV ,
γ= GNIDNI GNI .

Metrics