Abstract

Recent research in the field of photovoltaic and solar cell fabrication has shown the potential to significantly enhance light absorption in thin-film solar cells by using surface texturing and nanostructure coating techniques. In this paper, for the first time, we propose a new method for nano sandwich type thin-film solar cell fabrication by combining the laser amorphization (2nd solar cell generation) and laser nanofibers generation (3rd solar cell generation) techniques. In this novel technique, the crystalline silicon is irradiated by megahertz frequency femtosecond laser pulses under ambient conditions and the multi-layer of amorphorized silicon and nano fibrous layer are generated in the single-step on top of the silicon substrate. Light spectroscopy results show significant enhancement of light absorption in the generated multi layers solar cells (Silicon Oxide nanofibers / thin-film amorphorized silicon). This method is single step and no additional materials are added and both layers of the amorphorized thin-film silicon and three-dimensional (3D) silicon oxide nanofibrous structures are grown on top of the silicon substrate after laser irradiation. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofibers/thin-film cells by optimizing the laser pulse duration.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003).
    [CrossRef]
  2. K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001).
    [CrossRef]
  3. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  4. T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
    [CrossRef]
  5. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  6. J. Arch, J. Werner, and E. Bauser, “Hall effect analysis of liquid phase epitaxy silicon for thin film solar cells,” Sol. Energy Mater. Sol. Cells 29(4), 387–396 (1993).
    [CrossRef]
  7. Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
    [CrossRef]
  8. Y. Akimov, K. Ostrikov, and E. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
    [CrossRef]
  9. Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
    [CrossRef] [PubMed]
  10. L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
    [CrossRef]
  11. A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
    [CrossRef]
  12. D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
    [CrossRef]
  13. Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1–4), 237–242 (1997).
    [CrossRef]
  14. V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [CrossRef]
  15. A. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
    [CrossRef]
  16. H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
    [CrossRef]
  17. A. Chutinan, C. Li, N. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
    [CrossRef]
  18. J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(S3), A286–A292 (2010).
    [CrossRef] [PubMed]
  19. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
    [CrossRef]
  20. K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
    [CrossRef]
  21. L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).
  22. B. Nayak, V. Iyengar, and M. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovoltaics Res. Appl. 19(6), 631–639 (2011).
    [CrossRef]
  23. Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
    [CrossRef] [PubMed]
  24. C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011).
    [CrossRef]
  25. P. Spinelli, M. Hebbink, C. van Lare, M. Verschuuren, R. de Waele, and A. Polman, “Plasmonic anti-reflection coating for thin film solar cells,” in Optical Nanostructures for Photovoltaics (Optical Society of America, 2010).
  26. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
    [CrossRef] [PubMed]
  27. S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
    [CrossRef]
  28. X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
    [CrossRef]
  29. T. Liu, J. Eukel, H. Bagaria, M. Wong, M. Pasquali, and H. Schmidt, “Performance of CDSE tetrapods-gold as nanostructure electrochemical materials in photovoltaic cells,” in 34th Photovoltaic Specialists Conference (IEEE, 2009), 002074–002079.
  30. D. Ge, V. Domnich, and Y. Gogotsi, “High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 93(5), 2418–2423 (2003).
    [CrossRef]
  31. A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
    [CrossRef] [PubMed]
  32. N. Park, T. Kim, and S. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett. 78(17), 2575–2577 (2001).
    [CrossRef]
  33. P. Woodard and J. Dryden, “Thermal analysis of a laser pulse for discrete spot surface transformation hardening,” J. Appl. Phys. 85(5), 2488–2496 (1999).
    [CrossRef]
  34. J. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981).
    [CrossRef]
  35. A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct laser writing of amorphous silicon on si-substrate induced by high repetition femtosecond pulses,” J. Appl. Phys. 108(7), 074907 (2010).
    [CrossRef]
  36. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  37. P. Heil, H. Kang, H. Choi, and K. Kim, “TiO2 nanoparticle-nanofiber composites and their application in dye-sensitized solar cells,” in 10th Conference on Nanotechnology (IEEE, 2010), pp. 482–485.

2013

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

2012

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

2011

C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

B. Nayak, V. Iyengar, and M. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovoltaics Res. Appl. 19(6), 631–639 (2011).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[CrossRef]

A. Chutinan, C. Li, N. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

2010

J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(S3), A286–A292 (2010).
[CrossRef] [PubMed]

Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct laser writing of amorphous silicon on si-substrate induced by high repetition femtosecond pulses,” J. Appl. Phys. 108(7), 074907 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[CrossRef] [PubMed]

L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).

V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

A. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[CrossRef]

H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Y. Akimov, K. Ostrikov, and E. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

2008

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

2007

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

2004

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

2003

M. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003).
[CrossRef]

D. Ge, V. Domnich, and Y. Gogotsi, “High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 93(5), 2418–2423 (2003).
[CrossRef]

2001

N. Park, T. Kim, and S. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett. 78(17), 2575–2577 (2001).
[CrossRef]

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001).
[CrossRef]

1999

P. Woodard and J. Dryden, “Thermal analysis of a laser pulse for discrete spot surface transformation hardening,” J. Appl. Phys. 85(5), 2488–2496 (1999).
[CrossRef]

1998

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

1997

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1–4), 237–242 (1997).
[CrossRef]

1996

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

1993

J. Arch, J. Werner, and E. Bauser, “Hall effect analysis of liquid phase epitaxy silicon for thin film solar cells,” Sol. Energy Mater. Sol. Cells 29(4), 387–396 (1993).
[CrossRef]

1981

J. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981).
[CrossRef]

Akimov, Y.

Y. Akimov, K. Ostrikov, and E. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Allcock, H.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Arch, J.

J. Arch, J. Werner, and E. Bauser, “Hall effect analysis of liquid phase epitaxy silicon for thin film solar cells,” Sol. Energy Mater. Sol. Cells 29(4), 387–396 (1993).
[CrossRef]

Atwater, H.

V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bailat, J.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Ballif, C.

C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

Basham, J.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Bauser, E.

J. Arch, J. Werner, and E. Bauser, “Hall effect analysis of liquid phase epitaxy silicon for thin film solar cells,” Sol. Energy Mater. Sol. Cells 29(4), 387–396 (1993).
[CrossRef]

Bergmann, R.

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

Blakers, A. W.

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001).
[CrossRef]

Bloembergen, N.

J. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981).
[CrossRef]

Bouhafs, D.

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cai, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Catchpole, K. R.

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001).
[CrossRef]

Chen, L.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Chen, X.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Chen, X. H.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Chikouche, A.

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Chin, V.

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

Cho, J.

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Cho, S.

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

Choi, B.

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

Chutinan, A.

A. Chutinan, C. Li, N. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cubero, O.

C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Dobrzanski, L.

L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).

Domnich, V.

D. Ge, V. Domnich, and Y. Gogotsi, “High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 93(5), 2418–2423 (2003).
[CrossRef]

Droz, C.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Dryden, J.

P. Woodard and J. Dryden, “Thermal analysis of a laser pulse for discrete spot surface transformation hardening,” J. Appl. Phys. 85(5), 2488–2496 (1999).
[CrossRef]

Drygaa, A.

L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).

Eminian, C.

C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Fei, S.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Ferry, V.

V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Fukui, K.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1–4), 237–242 (1997).
[CrossRef]

Ge, D.

D. Ge, V. Domnich, and Y. Gogotsi, “High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 93(5), 2418–2423 (2003).
[CrossRef]

Gogotsi, Y.

D. Ge, V. Domnich, and Y. Gogotsi, “High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 93(5), 2418–2423 (2003).
[CrossRef]

Green, M.

M. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003).
[CrossRef]

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

Grimes, C.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Gu, M.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Guo, Z.

Gupta, M.

B. Nayak, V. Iyengar, and M. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovoltaics Res. Appl. 19(6), 631–639 (2011).
[CrossRef]

Haug, F.

C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

Hess, A.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Horn, M.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Hsu, C. M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Huang, S. M.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Inomata, Y.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1–4), 237–242 (1997).
[CrossRef]

Iyengar, V.

B. Nayak, V. Iyengar, and M. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovoltaics Res. Appl. 19(6), 631–639 (2011).
[CrossRef]

Jee, S. W.

Jia, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Jung, J. Y.

Kherani, N.

A. Chutinan, C. Li, N. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

Kiani, A.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct laser writing of amorphous silicon on si-substrate induced by high repetition femtosecond pulses,” J. Appl. Phys. 108(7), 074907 (2010).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[CrossRef] [PubMed]

Kim, D.

H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[CrossRef]

Kim, J.

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Kim, K.

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

Kim, S.

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

Kim, T.

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

N. Park, T. Kim, and S. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett. 78(17), 2575–2577 (2001).
[CrossRef]

Korevaar, B.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Kroll, U.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Kurz, H.

J. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981).
[CrossRef]

Kwon, S.

H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[CrossRef]

Lal, A.

Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

Lee, J.

H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[CrossRef]

Lee, J. H.

Lee, S.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Li, C.

A. Chutinan, C. Li, N. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

Li, E.

Y. Akimov, K. Ostrikov, and E. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Li, H.

V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Li, X. D.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Li, Z. Q.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Lim, H.

H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[CrossRef]

Lipinski, M.

L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).

Liu, C.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Liu, J.

J. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981).
[CrossRef]

Liu, Q. Q.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Loster, M.

A. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[CrossRef]

Lu, Y.

Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

Mallouk, T.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

McCann, M. J.

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Meier, J.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Moussi, A.

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Nayak, B.

B. Nayak, V. Iyengar, and M. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovoltaics Res. Appl. 19(6), 631–639 (2011).
[CrossRef]

Niquille, X.

C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

Ostrikov, K.

Y. Akimov, K. Ostrikov, and E. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Panek, P.

L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).

Park, H.

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[CrossRef]

Park, K. T.

Park, N.

N. Park, T. Kim, and S. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett. 78(17), 2575–2577 (2001).
[CrossRef]

Park, S.

N. Park, T. Kim, and S. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett. 78(17), 2575–2577 (2001).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Poxson, D.

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Pursel, S.

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Qiao, Q.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Ruiz, J.

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Saha, J. K.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Schade, H.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Schropp, R.

V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Schubert, E.

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Shah, A.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Shi, Z.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

Shirasawa, K.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1–4), 237–242 (1997).
[CrossRef]

Söderström, T.

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

Sood, A.

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Stephens, A.

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

Stokes, N.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Sun, Z.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Tan, B.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct laser writing of amorphous silicon on si-substrate induced by high repetition femtosecond pulses,” J. Appl. Phys. 108(7), 074907 (2010).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[CrossRef] [PubMed]

Tao, M.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Terrazzoni-Daudrix, V.

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Um, H. D.

Vallat-Sauvain, E.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Venkatakrishnan, K.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct laser writing of amorphous silicon on si-substrate induced by high repetition femtosecond pulses,” J. Appl. Phys. 108(7), 074907 (2010).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[CrossRef] [PubMed]

Verschuuren, M.

V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wang, Y.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Weber, K. J.

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001).
[CrossRef]

Welser, R.

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Werner, J.

J. Arch, J. Werner, and E. Bauser, “Hall effect analysis of liquid phase epitaxy silicon for thin film solar cells,” Sol. Energy Mater. Sol. Cells 29(4), 387–396 (1993).
[CrossRef]

Woodard, P.

P. Woodard and J. Dryden, “Thermal analysis of a laser pulse for discrete spot surface transformation hardening,” J. Appl. Phys. 85(5), 2488–2496 (1999).
[CrossRef]

Wyrsch, N.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yan, X.

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Yang, H.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Ye, X. J.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Yen, R.

J. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981).
[CrossRef]

Yi, J.

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

Yoon, S.

H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[CrossRef]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zaniewski, A.

A. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[CrossRef]

Zettl, A.

A. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[CrossRef]

Zhang, W.

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

Zheng, G.

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

Zhou, W.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zieba, P.

L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).

Zukotynski, S.

A. Chutinan, C. Li, N. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

Adv. Funct. Mater.

X. Yan, D. Poxson, J. Cho, R. Welser, A. Sood, J. Kim, and E. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored-and low-refractive index anti-reflection coatings,” Adv. Funct. Mater. 23(5), 583–590 (2013).
[CrossRef]

Appl. Phys. Lett.

J. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase transformation on and charged particle emission from a silicon crystal surface, induced by picosecond laser pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

V. Ferry, M. Verschuuren, H. Li, R. Schropp, H. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

A. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[CrossRef]

N. Park, T. Kim, and S. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett. 78(17), 2575–2577 (2001).
[CrossRef]

Appl. Surf. Sci.

K. Kim, T. Kim, H. Park, S. Kim, S. Cho, J. Yi, and B. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[CrossRef]

Arch. Mater. Sci. Eng.

L. Dobrzanski, A. Drygaa, P. Panek, M. Lipinski, and P. Zieba, “Development of the laser method of multicrystalline silicon surface texturization,” Arch. Mater. Sci. Eng. 38, 5–11 (2009).

J. Appl. Phys.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct laser writing of amorphous silicon on si-substrate induced by high repetition femtosecond pulses,” J. Appl. Phys. 108(7), 074907 (2010).
[CrossRef]

D. Ge, V. Domnich, and Y. Gogotsi, “High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation,” J. Appl. Phys. 93(5), 2418–2423 (2003).
[CrossRef]

T. Söderström, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[CrossRef]

P. Woodard and J. Dryden, “Thermal analysis of a laser pulse for discrete spot surface transformation hardening,” J. Appl. Phys. 85(5), 2488–2496 (1999).
[CrossRef]

J. Phys. D Appl. Phys.

A. Chutinan, C. Li, N. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys. 44(26), 262001 (2011).
[CrossRef]

J. Power Sources

S. Fei, S. Lee, S. Pursel, J. Basham, A. Hess, C. Grimes, M. Horn, T. Mallouk, and H. Allcock, “Electrolyte infiltration in phosphazene-based dye-sensitized solar cells,” J. Power Sources 196(11), 5223–5230 (2011).
[CrossRef]

Nano Lett.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Nanotechnology

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured nayf4:Yb3+/er3+/gd+3 nanorods with au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express

Plasmonics

Y. Akimov, K. Ostrikov, and E. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Prog. Photovoltaics Res. Appl.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovoltaics Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

B. Nayak, V. Iyengar, and M. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovoltaics Res. Appl. 19(6), 631–639 (2011).
[CrossRef]

Sol. Energy

M. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1–2), 79–93 (1998).
[CrossRef]

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1–4), 237–242 (1997).
[CrossRef]

H. Park, S. Kwon, J. Lee, H. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[CrossRef]

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001).
[CrossRef]

J. Arch, J. Werner, and E. Bauser, “Hall effect analysis of liquid phase epitaxy silicon for thin film solar cells,” Sol. Energy Mater. Sol. Cells 29(4), 387–396 (1993).
[CrossRef]

Z. Shi, W. Zhang, G. Zheng, V. Chin, A. Stephens, M. Green, and R. Bergmann, “The effects of solvent and dopant impurities on the performance of LPE silicon solar cells,” Sol. Energy Mater. Sol. Cells 41–42, 53–60 (1996).
[CrossRef]

Other

P. Spinelli, M. Hebbink, C. van Lare, M. Verschuuren, R. de Waele, and A. Polman, “Plasmonic anti-reflection coating for thin film solar cells,” in Optical Nanostructures for Photovoltaics (Optical Society of America, 2010).

T. Liu, J. Eukel, H. Bagaria, M. Wong, M. Pasquali, and H. Schmidt, “Performance of CDSE tetrapods-gold as nanostructure electrochemical materials in photovoltaic cells,” in 34th Photovoltaic Specialists Conference (IEEE, 2009), 002074–002079.

P. Heil, H. Kang, H. Choi, and K. Kim, “TiO2 nanoparticle-nanofiber composites and their application in dye-sensitized solar cells,” in 10th Conference on Nanotechnology (IEEE, 2010), pp. 482–485.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Fabrication process.

Fig. 2
Fig. 2

SEM image of generated nanofibers layer induced by 1400 fs laser pulses at 15 W.

Fig. 3
Fig. 3

TEM image of non-gold-sputtered nanofibers.

Fig. 4
Fig. 4

TEM image of gold-sputtered nanofibers.

Fig. 5
Fig. 5

EDX results of generated nanofibers.

Fig. 6
Fig. 6

a) AFM analysis of phase change, b) micro-Raman results.

Fig. 7
Fig. 7

Light reflection spectroscopy results.

Fig. 8
Fig. 8

Light spectroscopy results of a) nano sandwich type and b) a-Si thin-film cells.

Fig. 9
Fig. 9

Computed results of non-dimensional temperature at different pulse width.

Fig. 10
Fig. 10

Non-dimensional temperature and light absorption at different pulse durations.

Fig. 11
Fig. 11

Light reflection of nano-sandwich vs. a-Si thin-film type at different pulse duration.

Fig. 12
Fig. 12

SEM images of cross-sectional view of generated nanofibrous layers at different pulse duration.

Fig. 13
Fig. 13

Nanofibers layer height and light reflection ration at different pulse duration.

Tables (1)

Tables Icon

Table 1 Computed results vs. experimental results

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1 r r ( r T r )+ 2 T z 2 = 1 α T t
T z | z=0 = 1 k ηP(t) π r 0 2 exp( r 2 / r 0 2 )
R=r/ r 0 Z=z/ r 0 θ=T/ T ref τ= 4αt / r 0 2
1 R R ( R θ R )+ 2 θ Z 2 =4 θ τ
θ Z | Z=0 =Qexp( R 2 )[ u(τ)u(τ τ p ) ]
θ(R,Z,τ)= Q 2 π ττ p τ I(v)dv
I(v)=( 1 1+v ) 1 v exp( R 2 1+v Z 2 v )
θ(R,Z=0, τ p ) Q π arctan( τ p )exp( R 2 ) θ(R=0,Z, τ p ) Q π arctan( τ p )QZ
θ max (τ)= Q π [ arctan(π)arctan( τ τ p ) ]
θ ( 0 , 0 , τ ) = Q π τ

Metrics