Abstract

Pyramidal metamaterials are currently developed for ultra-broadband absorbers. They consist of periodic arrays of alternating metal/dielectric layers forming truncated square-based pyramids. The metallic layers of increasing lengths play the role of vertically and, to a less extent, laterally coupled plasmonic resonators. Based on detailed numerical simulations, we demonstrate that plasmon hybridization between such resonators helps in achieving ultra-broadband absorption. The dipolar modes of individual resonators are shown to be prominent in the electromagnetic coupling mechanism. Lateral coupling between adjacent pyramids and vertical coupling between alternating layers are proven to be key parameters for tuning of plasmon hybridization. Following optimization, the operational bandwidth of Au/Ge pyramids, i.e. the bandwidth within which absorption is higher than 90%, extends over a 0.2-5.8 µm wavelength range, i.e. from UV-visible to mid-infrared, and total absorption (integrated over the operational bandwidth) amounts to 98.0%. The omni-directional and polarization-independent high-absorption properties of the device are verified. Moreover, we show that the choice of the dielectric layer material (Si versus Ge) is not critical for achieving ultra-broadband characteristics, which confers versatility for both design and fabrication. Realistic fabrication scenarios are briefly discussed. This plasmon hybridization route could be useful in developing photothermal devices, thermal emitters or shielding devices that dissimulate objects from near infrared detectors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  3. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  5. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  6. O. Hayden, R. Agarwal, C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
    [CrossRef] [PubMed]
  7. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [CrossRef] [PubMed]
  8. M. K. Hedayati, F. Faupel, M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
    [CrossRef]
  9. Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
    [CrossRef]
  10. Y. Cui, K. H. Fung, J. Xu, S. He, N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
    [CrossRef] [PubMed]
  11. P. Zhu, L. J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
    [CrossRef]
  12. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [CrossRef] [PubMed]
  13. Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
  14. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [CrossRef] [PubMed]
  15. F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [CrossRef]
  16. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
    [CrossRef]
  17. L. Qiuqun, Y. Weixing, Z. Wencai, W. Taisheng, Z. Jingli, Z. Hongsheng, T. Shaohua, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3, 1187–1196 (2013).
  18. P. Clapham, M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244(5414), 281–282 (1973).
    [CrossRef]
  19. O. Deparis, J. P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).
  20. D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  21. Y. Danlée, I. Huynen, C. Bailly, “Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes,” Appl. Phys. Lett. 100(21), 213105 (2012).
    [CrossRef]
  22. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  23. R. F. Potter, “Germanium (Ge),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).
  24. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  25. M. Lobet, O. Deparis, “Plasmonic device using backscattering of light for enhanced gas and vapour sensing,” Proc. SPIE 8425, 842509 (2012).
    [CrossRef]
  26. M. Moharam, T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  27. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491 (1994).
    [CrossRef]
  28. J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
    [CrossRef] [PubMed]
  29. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  30. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
    [CrossRef]
  31. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
    [CrossRef]
  32. M. Pu, Q. Feng, C. Hu, X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012).
    [CrossRef]
  33. E. Popov, S. Enoch, N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009).
    [CrossRef] [PubMed]

2013 (2)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[CrossRef]

L. Qiuqun, Y. Weixing, Z. Wencai, W. Taisheng, Z. Jingli, Z. Hongsheng, T. Shaohua, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3, 1187–1196 (2013).

2012 (9)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, S. He, N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[CrossRef] [PubMed]

P. Zhu, L. J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[CrossRef]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[CrossRef] [PubMed]

M. K. Hedayati, F. Faupel, M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[CrossRef]

Y. Danlée, I. Huynen, C. Bailly, “Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes,” Appl. Phys. Lett. 100(21), 213105 (2012).
[CrossRef]

M. Lobet, O. Deparis, “Plasmonic device using backscattering of light for enhanced gas and vapour sensing,” Proc. SPIE 8425, 842509 (2012).
[CrossRef]

M. Pu, Q. Feng, C. Hu, X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012).
[CrossRef]

2011 (2)

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

2010 (2)

Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

2009 (2)

O. Deparis, J. P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).

E. Popov, S. Enoch, N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009).
[CrossRef] [PubMed]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

2007 (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

2006 (5)

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[CrossRef]

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

O. Hayden, R. Agarwal, C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1994 (1)

1981 (1)

1973 (1)

P. Clapham, M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Agarwal, R.

O. Hayden, R. Agarwal, C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

Agustsson, O.

O. Deparis, J. P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).

Alu, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[CrossRef]

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Bailly, C.

Y. Danlée, I. Huynen, C. Bailly, “Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes,” Appl. Phys. Lett. 100(21), 213105 (2012).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bonod, N.

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Chakravadhanula, V. S.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Christ, A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Clapham, P.

P. Clapham, M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Colliex, C.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[CrossRef]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Cui, K. H. Fung, J. Xu, S. He, N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[CrossRef] [PubMed]

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
[CrossRef]

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[CrossRef]

Danlée, Y.

Y. Danlée, I. Huynen, C. Bailly, “Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes,” Appl. Phys. Lett. 100(21), 213105 (2012).
[CrossRef]

Decroupet, D.

O. Deparis, J. P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).

Deparis, O.

M. Lobet, O. Deparis, “Plasmonic device using backscattering of light for enhanced gas and vapour sensing,” Proc. SPIE 8425, 842509 (2012).
[CrossRef]

O. Deparis, J. P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[CrossRef]

Draine, B. T.

Elbahri, M.

M. K. Hedayati, F. Faupel, M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Enoch, S.

Fang, N. X.

Faupel, F.

M. K. Hedayati, F. Faupel, M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Feng, Q.

M. Pu, Q. Feng, C. Hu, X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012).
[CrossRef]

Flatau, P. J.

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Fung, K. H.

García de Abajo, F. J.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Gaylord, T.

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[CrossRef]

Geuquet, N.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[CrossRef]

Gippius, N. A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Guo, L. J.

P. Zhu, L. J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hayden, O.

O. Hayden, R. Agarwal, C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

He, S.

Hedayati, M. K.

M. K. Hedayati, F. Faupel, M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Henrard, L.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Hongsheng, Z.

Hu, C.

M. Pu, Q. Feng, C. Hu, X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012).
[CrossRef]

Hutley, M. C.

P. Clapham, M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Huynen, I.

Y. Danlée, I. Huynen, C. Bailly, “Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes,” Appl. Phys. Lett. 100(21), 213105 (2012).
[CrossRef]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[CrossRef]

Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).

Jingli, Z.

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[CrossRef] [PubMed]

Kociak, M.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Kuhl, J.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[CrossRef]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Lieber, C. M.

O. Hayden, R. Agarwal, C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Liz-Marzán, L. M.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Lobet, M.

M. Lobet, O. Deparis, “Plasmonic device using backscattering of light for enhanced gas and vapour sensing,” Proc. SPIE 8425, 842509 (2012).
[CrossRef]

Luo, X.

M. Pu, Q. Feng, C. Hu, X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012).
[CrossRef]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Moharam, M.

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Nelayah, J.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Popov, E.

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Pu, M.

M. Pu, Q. Feng, C. Hu, X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012).
[CrossRef]

Qiuqun, L.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[CrossRef] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Shaohua, T.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Stéphan, O.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[CrossRef] [PubMed]

Taisheng, W.

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[CrossRef]

Vigneron, J. P.

O. Deparis, J. P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[CrossRef] [PubMed]

Weixing, Y.

Wencai, Z.

Xu, J.

Ye, Y. Q.

Yi, J.

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[CrossRef]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[CrossRef] [PubMed]

Zhu, P.

P. Zhu, L. J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[CrossRef]

Adv. Mater. (2)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Danlée, I. Huynen, C. Bailly, “Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes,” Appl. Phys. Lett. 100(21), 213105 (2012).
[CrossRef]

P. Zhu, L. J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[CrossRef]

F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. K. Hedayati, F. Faupel, M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[CrossRef]

J. Appl. Phys. (1)

O. Deparis, J. P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nano Lett. (3)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[CrossRef] [PubMed]

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

O. Hayden, R. Agarwal, C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Nature (1)

P. Clapham, M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (3)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[CrossRef]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Plasmonics (1)

M. Pu, Q. Feng, C. Hu, X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012).
[CrossRef]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Lobet, O. Deparis, “Plasmonic device using backscattering of light for enhanced gas and vapour sensing,” Proc. SPIE 8425, 842509 (2012).
[CrossRef]

Science (3)

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Other (2)

R. F. Potter, “Germanium (Ge),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Metamaterial absorber (MMA) made of truncated pyramids forming a square array of period P, (b) Absorption (blue) and reflectance (red) spectra of the MMA (non optimized structure: dashed line, optimized structure: solid line) with Ge as dielectric spacer under normally incident illumination, (c) Absorption (blue) and reflectance (red) spectra of the MMA with Si as dielectric spacer under normally incident illumination, (d) Angular dependencies of ηOBW (left axis, blue lines) and OBW (right axis, green lines) of the MMA for s-polarized (square) and p-polarized (dot) incident light.

Fig. 2
Fig. 2

Absorption map of the MMA as a function of the number of layers added from bottom (L = 600 nm) (L = 600 nm) to top (l = 75 nm). Lattice period is fixed to P = 800 nmAdding layers enlarges the operational bandwidth through additional plasmonic resonators which couple to each other, resulting in a blue shift of individual plasmonic modes.

Fig. 3
Fig. 3

(a) Absorption spectrum of the MMA as function of lateral period P increasing from 610 nm to 1200 nm. (b) Operational bandwidth OBW (right axis, green crosses) and figure of merit ηOBW with a threshold value of 70% (left axis, blue dots) as a function of lateral period. ηOBW shows a maximum value of 96.4% for P = 650 nm. The OBW shows a maximum of 6.6 µm for the same lateral period.

Fig. 4
Fig. 4

(a) Absorption spectrum of the MMA as a function of the dielectric spacer thickness increasing from 10 nm to 325 nm. The MMA is composed of N = 20 alternating gold and germanium layers and has a lateral period P = 650 nm. (b) Operational bandwidth OBW (right axis, green crosses) and figure of merit ηOBW with a threshold value of 70% (left axis, blue dots) as a function of dielectric thickness. ηOBW shows a maximum value of 96.6% for a dielectric thickness of 175 nm. The OBW shows a maximum of 6.9 µm for a dielectric thickness of 225 nm.

Fig. 5
Fig. 5

(a) Absorption cross-section spectra of square gold layers of lengths L: DDA simulations using Nd = 1 x 105 dipoles (L = 150 nm, blue line), Nd = 4 x 105 dipoles (L = 300 nm, green line), Nd = 1.125 x 105 dipoles (L = 450 nm, brown line) and Nd = 2 x 105 dipoles (L = 600 nm, red line). The interdistance between dipoles is dx = dy = dz = 3 nm (b) Variations of LSP wavelengths with aspect ratio R = L/tAu for dipolar mode (blue), sextupolar mode (green) and octupolar mode (red). (c) Field distribution (imaginary part of Ez) in y-z plane of the dipolar mode of the L = 600 nm square gold layer in germanium surrounding medium.

Fig. 6
Fig. 6

Absorption cross section spectrum (top left) and field distribution (imaginary part of Ez) in the x-y plane of the three major peaks (a: dipolar mode, b: sextupolar mode, c: octupolar mode) of an individual square gold layer (L = 600 nm) in germanium surrounding medium.

Fig. 7
Fig. 7

Absorption spectra of pyramidal systems with a) N = 1, b) N = 2, c) N = 3 and d) N = 4 layers. For N = 1, the absorption spectrum is typical of a shallow grating with high reflectance in the infrared. For N>1, supplementary modes appear and shift to the blue due to plasmon hybridization.

Fig. 8
Fig. 8

Map of the field intensity (normalized |E|2) (a, c, e) and of the projected Poynting vector in XZ plane (b, d, f) at incident wavelengths equal to λ = 1.1 µm, λ = 3.1 µm and λ = 5.1 µm for the starting structure. The XZ plane is taken in the middle of the pyramid(y = 384 nm).

Fig. 9
Fig. 9

Real component of Ez in xy plane above two successive Au resonant layers (top layers a-c, bottom layers d-f) at different wavelengths: λ = 1.1 µm, λ = 3.1 µm and λ = 5.1 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T( λ )+R( λ )+A( λ )=1.
η OBW = λ i λ f A(λ) dλ λ f λ i ,

Metrics