T. Shirakawa, K. L. Ishikawa, S. Suzuki, Y. Yamada, H. Takahashi, “Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm,” Opt. Express 18(8), 8383–8391 (2010).

[Crossref]
[PubMed]

Y. Liu, H. Liu, “Analysis of a diffractive microlens using the finite-difference time-domain method,” J. Micro-Nanolith. MEM 9(3), 033004 (2010).

[Crossref]

J. Vaillant, A. Crocherie, F. Hirigoyen, A. Cadien, J. Pond, “Uniform illumination and rigorous electromagnetic simulations applied to CMOS image sensors,” Opt. Express 15(9), 5494–5503 (2007).

[Crossref]
[PubMed]

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

Y. Liu, H. Liu, “Rigorous vector analysis of diffractive microlens by using the finite-difference time-domain method,” Proc. SPIE 7506, 7506141–7506148 (2005).

L. Kong, X. Yi, K. Lian, S. Chen, “Design and optical performance research of multi-phase diffractive microlens arrays,” J. Micromech. Microeng. 14(8), 1135–1139 (2004).

[Crossref]

J. N. Mait, A. Scherer, O. Dial, D. W. Prather, X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25(6), 381–383 (2000).

[Crossref]
[PubMed]

J. Jiang, G. Nordin, “A rigorous unidirectional method for designing finite aperture diffractive optical elements,” Opt. Express 7(6), 237–242 (2000).

[Crossref]
[PubMed]

D. W. Prather, S. Shi, “Combined scalar-vector method for the analysis of diffractive optical elements,” Opt. Eng. 39(7), 1850–1857 (2000).

[Crossref]

M. B. Stern, “Binary optics: A VLSI-based microoptics technology,” Microelectron. Eng. 32(1–4), 369–388 (1996).

[Crossref]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[Crossref]
[PubMed]

K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).

[Crossref]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).

[Crossref]

L. Kong, X. Yi, K. Lian, S. Chen, “Design and optical performance research of multi-phase diffractive microlens arrays,” J. Micromech. Microeng. 14(8), 1135–1139 (2004).

[Crossref]

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[Crossref]
[PubMed]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[Crossref]
[PubMed]

L. Kong, X. Yi, K. Lian, S. Chen, “Design and optical performance research of multi-phase diffractive microlens arrays,” J. Micromech. Microeng. 14(8), 1135–1139 (2004).

[Crossref]

L. Kong, X. Yi, K. Lian, S. Chen, “Design and optical performance research of multi-phase diffractive microlens arrays,” J. Micromech. Microeng. 14(8), 1135–1139 (2004).

[Crossref]

Y. Liu, H. Liu, “Analysis of a diffractive microlens using the finite-difference time-domain method,” J. Micro-Nanolith. MEM 9(3), 033004 (2010).

[Crossref]

Y. Liu, H. Liu, “Rigorous vector analysis of diffractive microlens by using the finite-difference time-domain method,” Proc. SPIE 7506, 7506141–7506148 (2005).

Y. Liu, H. Liu, “Analysis of a diffractive microlens using the finite-difference time-domain method,” J. Micro-Nanolith. MEM 9(3), 033004 (2010).

[Crossref]

Y. Liu, H. Liu, “Rigorous vector analysis of diffractive microlens by using the finite-difference time-domain method,” Proc. SPIE 7506, 7506141–7506148 (2005).

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

J. N. Mait, A. Scherer, O. Dial, D. W. Prather, X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25(6), 381–383 (2000).

[Crossref]
[PubMed]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14(1), 34–43 (1997).

[Crossref]

J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12(10), 2145–2158 (1995).

[Crossref]

J. N. Mait, A. Scherer, O. Dial, D. W. Prather, X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25(6), 381–383 (2000).

[Crossref]
[PubMed]

D. W. Prather, S. Shi, “Combined scalar-vector method for the analysis of diffractive optical elements,” Opt. Eng. 39(7), 1850–1857 (2000).

[Crossref]

D. W. Prather, “Design and application of subwavelength diffractive lenses for integration with infrared photodetectors,” Opt. Eng. 38(5), 870–878 (1999).

[Crossref]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16(5), 1131 (1999).

[Crossref]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14(1), 34–43 (1997).

[Crossref]

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

M. B. Stern, “Binary optics: A VLSI-based microoptics technology,” Microelectron. Eng. 32(1–4), 369–388 (1996).

[Crossref]

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[Crossref]
[PubMed]

K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).

[Crossref]

L. Kong, X. Yi, K. Lian, S. Chen, “Design and optical performance research of multi-phase diffractive microlens arrays,” J. Micromech. Microeng. 14(8), 1135–1139 (2004).

[Crossref]

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

L. Zhang, X. Z. Ma, J. L. Zhuang, C. K. Qiu, C. L. Du, J. Tang, Z. W. Tian, “Microfabrication of a Diffractive Microlens Array on n-GaAs by an Efficient Electrochemical Method,” Adv. Mater. 19(22), 3912–3918 (2007).

[Crossref]

K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).

[Crossref]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).

[Crossref]

Y. Liu, H. Liu, “Analysis of a diffractive microlens using the finite-difference time-domain method,” J. Micro-Nanolith. MEM 9(3), 033004 (2010).

[Crossref]

L. Kong, X. Yi, K. Lian, S. Chen, “Design and optical performance research of multi-phase diffractive microlens arrays,” J. Micromech. Microeng. 14(8), 1135–1139 (2004).

[Crossref]

M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14(4), 901–906 (1997).

[Crossref]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14(1), 34–43 (1997).

[Crossref]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15(7), 1822–1837 (1998).

[Crossref]

J. Liu, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Interference effect of dual diffractive cylindrical microlenses analyzed by rigorous electromagnetic theory,” J. Opt. Soc. Am. A 18(3), 526–536 (2001).

[Crossref]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16(5), 1131 (1999).

[Crossref]

J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12(10), 2145–2158 (1995).

[Crossref]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11(6), 1827–1834 (1994).

[Crossref]

M. B. Stern, “Binary optics: A VLSI-based microoptics technology,” Microelectron. Eng. 32(1–4), 369–388 (1996).

[Crossref]

D. W. Prather, “Design and application of subwavelength diffractive lenses for integration with infrared photodetectors,” Opt. Eng. 38(5), 870–878 (1999).

[Crossref]

D. W. Prather, S. Shi, “Combined scalar-vector method for the analysis of diffractive optical elements,” Opt. Eng. 39(7), 1850–1857 (2000).

[Crossref]

J. Jiang, G. Nordin, “A rigorous unidirectional method for designing finite aperture diffractive optical elements,” Opt. Express 7(6), 237–242 (2000).

[Crossref]
[PubMed]

T. Shirakawa, K. L. Ishikawa, S. Suzuki, Y. Yamada, H. Takahashi, “Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm,” Opt. Express 18(8), 8383–8391 (2010).

[Crossref]
[PubMed]

J. Vaillant, A. Crocherie, F. Hirigoyen, A. Cadien, J. Pond, “Uniform illumination and rigorous electromagnetic simulations applied to CMOS image sensors,” Opt. Express 15(9), 5494–5503 (2007).

[Crossref]
[PubMed]

M. He, X. C. Yuan, N. Ngo, J. Bu, S. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express 11(14), 1621–1627 (2003).

[Crossref]
[PubMed]

J. N. Mait, A. Scherer, O. Dial, D. W. Prather, X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25(6), 381–383 (2000).

[Crossref]
[PubMed]

J. Shao, Y. Ding, H. Zhai, B. Hu, X. Li, H. Tian, “Fabrication of large curvature microlens array using confined laser swelling method,” Opt. Lett. 38(16), 3044–3046 (2013).

[Crossref]
[PubMed]

Y. Liu, H. Liu, “Rigorous vector analysis of diffractive microlens by using the finite-difference time-domain method,” Proc. SPIE 7506, 7506141–7506148 (2005).

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).

[Crossref]
[PubMed]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, MA, 2005, third edition).

T.-F. Huang, S.-H. Hua, K.-C. Hu, and C.-w. Su, “LED chip having micro-lens structure,” (Google Patents, 2012).

J. W. Goodman, Introduction to Fourier optics, Third Edition, (Roberts and Company Publishers, Colorado, 2005, third edition).