Abstract

In this work we present a refractive index sensor based on the leaky radiation of a microfiber. The 5.3um diameter microfiber is fabricated by drawing a commercial optical fiber. When the microfiber is immersed into a liquid with larger refractive index than the effective index of fiber mode, the light will leak out through the leaky radiation process. The variation of refractive index of liquid can be monitored by measuring radiation angle of light. The refractive index sensitivity can be over 400 degree/RIU in theory. In the experiment, the variation value 0.001 of refractive index of liquid around this microfiber can be detected through this technique. This work provides a simple and sensitive method for refractive index sensing application.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bhatia, B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
    [Crossref] [PubMed]
  2. R. Slavík, J. Homola, J. Ctyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
    [Crossref]
  3. H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
    [Crossref] [PubMed]
  4. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [Crossref] [PubMed]
  5. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
    [Crossref] [PubMed]
  6. F. Xu, P. Horak, G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [Crossref] [PubMed]
  7. L. Yuan, J. Yang, Z. Liu, J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
    [Crossref] [PubMed]
  8. P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
    [Crossref] [PubMed]
  9. F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [Crossref] [PubMed]
  10. B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, J. N. Jang, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22(23), 1769–1771 (1997).
    [Crossref] [PubMed]
  11. N. D. Rees, S. W. James, R. P. Tatam, G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
    [Crossref] [PubMed]
  12. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  13. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
    [Crossref] [PubMed]
  14. Z. Wang, S. Ramachandran, “Ultrasensitive long-period fiber gratings for broadband modulators and sensors,” Opt. Lett. 28(24), 2458–2460 (2003).
    [Crossref] [PubMed]
  15. Y. Ran, L. Jin, L.-P. Sun, J. Li, B.-O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37(13), 2649–2651 (2012).
    [Crossref] [PubMed]
  16. Z. Yi, D. Xiaopeng, L. Ganbin, R. Adhami, “Wide range FBG displacement sensor based on twin-core fiber filter,” J. Lightwave Technol. 30(3), 337–343 (2012).
    [Crossref]
  17. K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
    [Crossref] [PubMed]
  18. L. Rindorf, O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [Crossref] [PubMed]
  19. D. K. C. Wu, B. T. Kuhlmey, B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]

2012 (5)

2011 (1)

2010 (2)

2009 (1)

2008 (2)

2007 (1)

2006 (1)

2005 (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2003 (1)

2002 (1)

2001 (2)

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref] [PubMed]

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

1997 (1)

Adhami, R.

Ashwell, G. J.

Bang, O.

Bennion, I.

Bhatia, P.

Brambilla, G.

Brynda, E.

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

Chen, N.-K.

Cheng, G.-L.

Choi, H. Y.

Choi, S. S.

Chui, H.-C.

Ctyroky, J.

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

Eggleton, B. J.

Feng, J.

Ganbin, L.

Gu, F.

F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Guan, B.-O.

Gupta, B. D.

Gwandu, B. A. L.

Homola, J.

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

Horak, P.

Hu, D. J. J.

Huang, C.-H.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

James, S. W.

Jang, J. N.

Jin, L.

Kou, J. L.

Kuhlmey, B. T.

Lee, B. H.

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lee, S. B.

Li, J.

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lim, J. L.

Lin, H.-Y.

Liu, Y.

Liu, Z.

Lu, Y. Q.

Milenko, K.

Mudhana, G.

Paek, U.-C.

Park, K. S.

Ramachandran, S.

Ran, Y.

Rees, N. D.

Rindorf, L.

Shu, X.

Shum, P. P.

Slavík, R.

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

Sun, J.

Sun, L.-P.

Tatam, R. P.

Tong, L.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Tong, W.

Wang, P.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

Wang, Q. J.

Wang, Y.

Wang, Z.

Wei, H.

Wolinski, T. R.

Wu, D. K. C.

Xia, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

Xiaopeng, D.

Xu, F.

Xu, X.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yang, J.

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yi, Z.

Yin, X.

F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Ying, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

Yuan, L.

Zhang, L.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref] [PubMed]

Zhang, T.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (2)

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (10)

J. L. Kou, J. Feng, Q. J. Wang, F. Xu, Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
[Crossref] [PubMed]

K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
[Crossref] [PubMed]

Y. Ran, L. Jin, L.-P. Sun, J. Li, B.-O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37(13), 2649–2651 (2012).
[Crossref] [PubMed]

L. Rindorf, O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[Crossref] [PubMed]

D. K. C. Wu, B. T. Kuhlmey, B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, J. N. Jang, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22(23), 1769–1771 (1997).
[Crossref] [PubMed]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref] [PubMed]

N. D. Rees, S. W. James, R. P. Tatam, G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
[Crossref] [PubMed]

Z. Wang, S. Ramachandran, “Ultrasensitive long-period fiber gratings for broadband modulators and sensors,” Opt. Lett. 28(24), 2458–2460 (2003).
[Crossref] [PubMed]

L. Yuan, J. Yang, Z. Liu, J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[Crossref]

Supplementary Material (1)

» Media 1: AVI (8232 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The microfiber leaky radiation (a) the leaky radiation. pattern. (b) the leaky radiation angle.

Fig. 2
Fig. 2

The dependence of radiation angle (solid line) and sensitivity (dotted line) on RI n e (with n e f f = 1.4624 ).

Fig. 3
Fig. 3

Simulated leaky radiation of microfiber ( | E | 2 profile). The radiation angle is θ = 12.885 (with n e = 1.5000 ).

Fig. 4
Fig. 4

FIB picture of a fabricated microfiber.

Fig. 5
Fig. 5

Experiment setup of the leaky radiation.

Fig. 6
Fig. 6

(a) 405nm leaky radiation cone in the bottle (see Media 1). (b-l) 405nm leaky radiation pattern in eleven different PDMS-toluene solutions with volume ratio 1:8, 1:6, 1:5, 1:4, 1:3, 1:2.5, 1:2, 1:1.67, 1:1.33, 1:1, 1:0.75.

Fig. 7
Fig. 7

Measured RI at 405nm wavelength by leaky radiation (red circle dots) and Abbe refractometer (black square dots) for different PDMS-toluene volume radio solutions.

Fig. 8
Fig. 8

(a-g) 532nm leaky radiation pattern in seven different PDMS-toluene solutions with volume ratio 1:8, 1:6, 1:5, 1:4, 1:3, 1:2.5, 1:2. (h) Comparison of the different radiation angles for different solutions.

Fig. 9
Fig. 9

Measured RI at 532nm wavelength by leaky radiation (red circle dots) and Abbe refractometer (black square dots) for different PDMS-toluene volume radio solutions.

Tables (1)

Tables Icon

Table 1 RI measured from leaky radiation and Abbe refractometer at 405nm wavelength

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cos θ = n e f f n e
η = d θ d n e = n e f f n e 1 n e 2 n e f f 2
n e = n e f f cos θ

Metrics