Abstract

We propose a new nanowire based, junction-less phototransistor, that consists of a channel with both wide and narrow regions to ensure efficient light absorption and low dark current, respectively. While the light is absorbed in the wide region, the narrow region allows for ease of band engineering. We also find that a nanowire in the source can further boost the optical gain. The proposed device, which can potentially detect very low light intensities, does not rely on complicated doping profiles, but instead uses suitably designed gates. Our calculations show the detection of a photon flux as low as 35 per second.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Shiri, Y. Kong, A. Buin, M. P. Anantram, “Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires,” Appl. Phys. Lett. 93(7), 073114 (2008).
    [CrossRef]
  2. A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
    [CrossRef] [PubMed]
  3. R. Agarwal, C. M. Lieber, “Semiconductor Nanowires: Optics and Optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
    [CrossRef]
  4. J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
    [CrossRef]
  5. H. G. Choi, Y. S. Choi, Y. C. Jo, H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit,” Jpn. J. Appl. Phys. 43(6B), 3916–3918 (2004).
    [CrossRef]
  6. A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
    [CrossRef]
  7. S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
    [CrossRef]
  8. K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
    [CrossRef]
  9. W. Kim, K. S. Chu, “ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity,” Phys. Status Solidi., A Appl. Mater. Sci. 206(1), 179–182 (2009).
    [CrossRef]
  10. E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009).
    [CrossRef]
  11. A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.
  12. G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
    [CrossRef]
  13. Y. H. Ahn, J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
    [CrossRef]
  14. K.-S. Shin, A. Pan, C. O. Chui, “Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors,” Appl. Phys. Lett. 100(12), 123504 (2012).
    [CrossRef]
  15. H. Yamamoto, K. Taniguchi, C. Hamaguchi, “High-Sensitivity SOI MOS Photodetector with Self-Amplification,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1382–1386 (1996).
    [CrossRef]
  16. Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991).
    [CrossRef]
  17. Atlas, Silvaco., www.silvaco.com
  18. R. F. Pierret, Semiconductor Device Fundamentals, (Pearson Education, 1996), Chap. 10, 11.
  19. A. Fadavi-Roudsari, S. S. Saini, N. O, M. P. Anantram, “High-Gain, Multiple-Gate Photodetector with Nanowires in the Channel,” IEEE Electron Device Lett. 32(3), 357–359 (2011).
    [CrossRef]
  20. The results are obtained by solving the classic Poisson’s and carrier continuity equations using Atlas simulator [17]. Room temperature dark currents are obtained by running simulations at higher temperatures, and then estimating the current at room temperature. Electron and hole lifetimes are assumed to be 10-5s
  21. M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
    [CrossRef]
  22. O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
    [CrossRef] [PubMed]
  23. R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
    [CrossRef]

2012

K.-S. Shin, A. Pan, C. O. Chui, “Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors,” Appl. Phys. Lett. 100(12), 123504 (2012).
[CrossRef]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[CrossRef]

2011

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

A. Fadavi-Roudsari, S. S. Saini, N. O, M. P. Anantram, “High-Gain, Multiple-Gate Photodetector with Nanowires in the Channel,” IEEE Electron Device Lett. 32(3), 357–359 (2011).
[CrossRef]

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[CrossRef]

2010

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

2009

W. Kim, K. S. Chu, “ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity,” Phys. Status Solidi., A Appl. Mater. Sci. 206(1), 179–182 (2009).
[CrossRef]

E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009).
[CrossRef]

2008

D. Shiri, Y. Kong, A. Buin, M. P. Anantram, “Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires,” Appl. Phys. Lett. 93(7), 073114 (2008).
[CrossRef]

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
[CrossRef] [PubMed]

2007

Y. H. Ahn, J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
[CrossRef]

2006

R. Agarwal, C. M. Lieber, “Semiconductor Nanowires: Optics and Optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[CrossRef]

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

2004

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

H. G. Choi, Y. S. Choi, Y. C. Jo, H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit,” Jpn. J. Appl. Phys. 43(6B), 3916–3918 (2004).
[CrossRef]

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

1996

H. Yamamoto, K. Taniguchi, C. Hamaguchi, “High-Sensitivity SOI MOS Photodetector with Self-Amplification,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1382–1386 (1996).
[CrossRef]

1991

Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991).
[CrossRef]

Agarwal, R.

R. Agarwal, C. M. Lieber, “Semiconductor Nanowires: Optics and Optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[CrossRef]

Ahn, Y. H.

Y. H. Ahn, J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
[CrossRef]

Anantram, M. P.

A. Fadavi-Roudsari, S. S. Saini, N. O, M. P. Anantram, “High-Gain, Multiple-Gate Photodetector with Nanowires in the Channel,” IEEE Electron Device Lett. 32(3), 357–359 (2011).
[CrossRef]

D. Shiri, Y. Kong, A. Buin, M. P. Anantram, “Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires,” Appl. Phys. Lett. 93(7), 073114 (2008).
[CrossRef]

Benoît à la Guillaume, Q.

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

Besson, A.

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Buin, A.

D. Shiri, Y. Kong, A. Buin, M. P. Anantram, “Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires,” Appl. Phys. Lett. 93(7), 073114 (2008).
[CrossRef]

Calvo, V.

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Cheng, G.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[CrossRef]

Cho, K.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

Choi, H. G.

H. G. Choi, Y. S. Choi, Y. C. Jo, H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit,” Jpn. J. Appl. Phys. 43(6B), 3916–3918 (2004).
[CrossRef]

Choi, P.

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

Choi, Y. K.

E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009).
[CrossRef]

Choi, Y. S.

H. G. Choi, Y. S. Choi, Y. C. Jo, H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit,” Jpn. J. Appl. Phys. 43(6B), 3916–3918 (2004).
[CrossRef]

Chu, K. S.

W. Kim, K. S. Chu, “ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity,” Phys. Status Solidi., A Appl. Mater. Sci. 206(1), 179–182 (2009).
[CrossRef]

Chui, C. O.

K.-S. Shin, A. Pan, C. O. Chui, “Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors,” Appl. Phys. Lett. 100(12), 123504 (2012).
[CrossRef]

Colinge, J.-P.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Coustel, R.

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

Dehdashti Akhavan, N.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Demichel, O.

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Du, Z.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[CrossRef]

Dubois, L.

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

Duclairoir, F.

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

Fadavi-Roudsari, A.

A. Fadavi-Roudsari, S. S. Saini, N. O, M. P. Anantram, “High-Gain, Multiple-Gate Photodetector with Nanowires in the Channel,” IEEE Electron Device Lett. 32(3), 357–359 (2011).
[CrossRef]

Ferain, I.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Gentile, P.

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Hamaguchi, C.

H. Yamamoto, K. Taniguchi, C. Hamaguchi, “High-Sensitivity SOI MOS Photodetector with Self-Amplification,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1382–1386 (1996).
[CrossRef]

Han, S.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Jeong, D. Y.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

Jin, W.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Jo, Y. C.

H. G. Choi, Y. S. Choi, Y. C. Jo, H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit,” Jpn. J. Appl. Phys. 43(6B), 3916–3918 (2004).
[CrossRef]

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

Käsebier, T.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[CrossRef]

Keem, K.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

Kim, H.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

H. G. Choi, Y. S. Choi, Y. C. Jo, H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit,” Jpn. J. Appl. Phys. 43(6B), 3916–3918 (2004).
[CrossRef]

Kim, K. H.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

Kim, S.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

Kim, W.

W. Kim, K. S. Chu, “ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity,” Phys. Status Solidi., A Appl. Mater. Sci. 206(1), 179–182 (2009).
[CrossRef]

Kong, Y.

D. Shiri, Y. Kong, A. Buin, M. P. Anantram, “Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires,” Appl. Phys. Lett. 93(7), 073114 (2008).
[CrossRef]

Kranti, A.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Kroll, M.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[CrossRef]

Lee, C.-W.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Lee, E.

E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009).
[CrossRef]

Lei, B.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Li, B.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[CrossRef]

Li, C.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Lieber, C. M.

R. Agarwal, C. M. Lieber, “Semiconductor Nanowires: Optics and Optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[CrossRef]

Lim, K. S.

E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009).
[CrossRef]

Liu, B.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[CrossRef]

Liu, X.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Liu, Y.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
[CrossRef] [PubMed]

Liu, Z.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Lo, Y. H.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
[CrossRef] [PubMed]

A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.

Magnea, N.

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Min, B.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

Miyawaki, M.

Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991).
[CrossRef]

Moon, B. M.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

Moon, D. I.

E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009).
[CrossRef]

Nakamura, Y.

Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991).
[CrossRef]

Noé, P.

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Noh, T.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

O, N.

A. Fadavi-Roudsari, S. S. Saini, N. O, M. P. Anantram, “High-Gain, Multiple-Gate Photodetector with Nanowires in the Channel,” IEEE Electron Device Lett. 32(3), 357–359 (2011).
[CrossRef]

Oehler, F.

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Ohmi, T.

Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991).
[CrossRef]

Ohzu, H.

Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991).
[CrossRef]

Otto, M.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[CrossRef]

Pan, A.

K.-S. Shin, A. Pan, C. O. Chui, “Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors,” Appl. Phys. Lett. 100(12), 123504 (2012).
[CrossRef]

Park, J.

Y. H. Ahn, J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
[CrossRef]

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.

Park, J. H.

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

Pauc, N.

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Razavi, P.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Renault, O.

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

Saini, S. S.

A. Fadavi-Roudsari, S. S. Saini, N. O, M. P. Anantram, “High-Gain, Multiple-Gate Photodetector with Nanowires in the Channel,” IEEE Electron Device Lett. 32(3), 357–359 (2011).
[CrossRef]

Salem, B.

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Salzer, R.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[CrossRef]

Seo, S. H.

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

Shin, J. K.

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

Shin, K.-S.

K.-S. Shin, A. Pan, C. O. Chui, “Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors,” Appl. Phys. Lett. 100(12), 123504 (2012).
[CrossRef]

Shiri, D.

D. Shiri, Y. Kong, A. Buin, M. P. Anantram, “Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires,” Appl. Phys. Lett. 93(7), 073114 (2008).
[CrossRef]

Soci, C.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
[CrossRef] [PubMed]

A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.

Suh, M.

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

Tanaka, N.

Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991).
[CrossRef]

Tang, T.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Taniguchi, K.

H. Yamamoto, K. Taniguchi, C. Hamaguchi, “High-Sensitivity SOI MOS Photodetector with Self-Amplification,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1382–1386 (1996).
[CrossRef]

Tünnermann, A.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[CrossRef]

Wang, D.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
[CrossRef] [PubMed]

A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.

Wang, I. S.

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

Wehrspohn, R. B.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[CrossRef]

Wu, X.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[CrossRef]

Xiang, B.

A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.

Yamamoto, H.

H. Yamamoto, K. Taniguchi, C. Hamaguchi, “High-Sensitivity SOI MOS Photodetector with Self-Amplification,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1382–1386 (1996).
[CrossRef]

Yan, R.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Yang, J. H.

E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009).
[CrossRef]

Yoon, H. J.

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

You, S.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
[CrossRef] [PubMed]

Yu, R.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Zhang, A.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
[CrossRef] [PubMed]

A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.

Zhang, D.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Zhang, X.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[CrossRef]

Zhou, C.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

Appl. Phys. Lett.

D. Shiri, Y. Kong, A. Buin, M. P. Anantram, “Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires,” Appl. Phys. Lett. 93(7), 073114 (2008).
[CrossRef]

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008).
[CrossRef] [PubMed]

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[CrossRef]

Y. H. Ahn, J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007).
[CrossRef]

K.-S. Shin, A. Pan, C. O. Chui, “Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors,” Appl. Phys. Lett. 100(12), 123504 (2012).
[CrossRef]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

R. Agarwal, C. M. Lieber, “Semiconductor Nanowires: Optics and Optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[CrossRef]

Chem. Phys. Lett.

S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004).
[CrossRef]

IEEE Electron Device Lett.

E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009).
[CrossRef]

A. Fadavi-Roudsari, S. S. Saini, N. O, M. P. Anantram, “High-Gain, Multiple-Gate Photodetector with Nanowires in the Channel,” IEEE Electron Device Lett. 32(3), 357–359 (2011).
[CrossRef]

IEEE Trans. Electron. Dev.

Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991).
[CrossRef]

J. Phys. Chem. C

R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011).
[CrossRef]

Jpn. J. Appl. Phys.

H. Yamamoto, K. Taniguchi, C. Hamaguchi, “High-Sensitivity SOI MOS Photodetector with Self-Amplification,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1382–1386 (1996).
[CrossRef]

K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006).
[CrossRef]

J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004).
[CrossRef]

H. G. Choi, Y. S. Choi, Y. C. Jo, H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit,” Jpn. J. Appl. Phys. 43(6B), 3916–3918 (2004).
[CrossRef]

Nano Lett.

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010).
[CrossRef] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci.

W. Kim, K. S. Chu, “ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity,” Phys. Status Solidi., A Appl. Mater. Sci. 206(1), 179–182 (2009).
[CrossRef]

Other

A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.

A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360.
[CrossRef]

Atlas, Silvaco., www.silvaco.com

R. F. Pierret, Semiconductor Device Fundamentals, (Pearson Education, 1996), Chap. 10, 11.

The results are obtained by solving the classic Poisson’s and carrier continuity equations using Atlas simulator [17]. Room temperature dark currents are obtained by running simulations at higher temperatures, and then estimating the current at room temperature. Electron and hole lifetimes are assumed to be 10-5s

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Junction-less phototransistor with multiple gates. The semiconductor is entirely p-type (doping: 1015cm−3), with the thickness of 0.85µm. The total channel length is 5µm. The channel is 2µm wide everywhere except the narrow regions. The gate oxide is 20nm (not shown in figure). The secondary gate is lifted up to show the narrow region NW2. A similar geometry is present underneath the primary gate that is shown in the top view, where the gates’ top layer is removed. Light is shined through a window with the area of 5.6µm2. (b), (c) Energy band diagram and carrier concentration (logarithmic scale) of the structure, along cutline AA’, located about 100nm below the top silicon and oxide interface. Dashed lines represent the energy band and carrier concentration when the secondary gate is removed. VGprimary = 1V, VGsecondary = −1V, VS = 0V, VD = 0V.

Fig. 2
Fig. 2

(a) Source current versus the secondary gate bias in the junction-less phototransistor. The primary gate is 200nm long and covers a 200nm wide channel. The secondary gate is 1.2um long, and covers a 20nm wide region (NW2). (b) Impact of the secondary gate bias over conduction band energy of the structure along the channel (cutline AA’). VGprimary = 1.0V, VS = 0.5V, VD = 0V.

Fig. 3
Fig. 3

(a) Source current versus nanowire width underneath the secondary gate. The primary gate is 200nm long and covers a 200nm wide nanowire. The secondary gate is 400nm long. VGprimary = 1.0V, VS = 0.5V, VD = 0V, VGsecondary = −1.0V. (b) Conduction band energy, across the source area (cutline BB’).

Fig. 4
Fig. 4

(a) Source current versus nanowire length underneath the secondary gate. (b) Conduction band energy, along the channel for different lengths of the secondary gate and NW2. For both cases the primary gate is 200nm long and covers a 200nm wide nanowire, and the secondary gate covers a 20nm wide channel. VGprimary = 1.0V, VGsecondary = −1.0V, VS = 0.5V, VD = 0V.

Fig. 5
Fig. 5

Transient response of a junction-less, multiple gate photodetector, with NW1 = 200nm, and NW2 = 20nm. The inset shows the same data in logarithmic scale. VGprimary = 1.0V, VGsecondary = −1.0V, VS = 0.5V, VD = 0V, Intensity = 10−4W/cm2.

Tables (2)

Tables Icon

Table 1 Comparison of Multiple Gate Phototransistors

Tables Icon

Table 2 Rise Time and Fall Time of Multiple Gate Phototransistors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ= I p I p + I n

Metrics