Abstract

We present a simple broadband gradient-index antireflective coating, fabricated directly on a single mode telecom fiber tip. A regular array of hemi-ellipsoidal protrusions significantly reduce the Fresnel reflection from the glass-air interface. The parameters of the structure were optimized with numerical simulation for the best performance at and around 1550 nm and the coating was fabricated with Direct Laser Writing. The measured reflectance decreased by a factor of 30 at 1550 nm and was below 0.28% for the 100 nm spectral band around the central wavelength. Compared to quarter wavelength antireflective coatings the demonstrated approach offers significantly reduced technological challenges, in particular processing of a single optical material with low sensitivity to imperfections in the fabrication process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 2001), Chap. 15.
  2. J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11, 51–56 (1880).
  3. U. B. Schallenberg, “Nanostructures versus thin films in the design of antireflection coatings,” Proc. SPIE 8168, 81681N (2011).
  4. U. Schulz, “Review of modern techniques to generate antireflective properties on thermoplastic polymers,” Appl. Opt. 45(7), 1608–1618 (2006).
    [CrossRef] [PubMed]
  5. P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
    [CrossRef]
  6. H. L. Chen, S. Y. Chuang, C. H. Lin, Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
    [CrossRef] [PubMed]
  7. C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
    [CrossRef]
  8. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  9. K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
    [CrossRef]
  10. Y. Kanamori, M. Okochi, K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express 21(1), 322–328 (2013).
    [CrossRef] [PubMed]
  11. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
    [CrossRef]
  12. Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
    [CrossRef] [PubMed]
  13. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  14. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, “Toward perfect antireflection coatings: Numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
    [CrossRef] [PubMed]
  15. D. Poitras, J. A. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43(6), 1286–1295 (2004).
    [CrossRef] [PubMed]
  16. E. B. Grann, M. G. Varga, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995).
    [CrossRef]
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  18. M. S. Rill, Three-Dimensional Photonic Metamaterials by Direct Laser Writing and Advanced Metallization Techniques (Ph.D. Thesis, Karlsruhe School of Optics & Photonics, 2010), Chap. 3, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018614 .
  19. H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A Phys. 83(1–3), 130–135 (2000).
    [CrossRef]
  20. K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
    [CrossRef]
  21. H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
    [CrossRef]

2013 (1)

2011 (1)

U. B. Schallenberg, “Nanostructures versus thin films in the design of antireflection coatings,” Proc. SPIE 8168, 81681N (2011).

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

2009 (1)

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

2008 (1)

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

2007 (2)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

H. L. Chen, S. Y. Chuang, C. H. Lin, Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

2002 (2)

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, “Toward perfect antireflection coatings: Numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
[CrossRef] [PubMed]

2000 (3)

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A Phys. 83(1–3), 130–135 (2000).
[CrossRef]

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

1999 (1)

1997 (1)

P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

1995 (1)

1983 (1)

1880 (1)

J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11, 51–56 (1880).

Abbott, S.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Acet, M.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Acree, M.

Ahn, C. H.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

Allsopp, D. W. E.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Becker, H.

H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A Phys. 83(1–3), 130–135 (2000).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Carl, A.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Chen, H. L.

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chen, Q.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Chuang, S. Y.

David, C.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Desta, Y.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

Dobrowolski, J. A.

Gabriel, M.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Gobrecht, J.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Grann, E. B.

Hadobás, K.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Hane, K.

Heim, U.

H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A Phys. 83(1–3), 130–135 (2000).
[CrossRef]

Heyderman, L. J.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Hubbard, G.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Jiang, B.

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Jiang, P.

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Kaiser, W.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Kanamori, Y.

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kim, K.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

Kirsch, S.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Koppel, S.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Lalanne, P.

P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Lee, J.-B.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

Lin, C. H.

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lin, Y. H.

Liu, C.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Ma, P.

Manohara, H.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

Morris, G. M.

P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Murphy, M.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

Okochi, M.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Park, S.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

Poitras, D.

Pommet, D. A.

Rayleigh, J. S.

J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11, 51–56 (1880).

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Sasaki, M.

Scandella, L.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Schallenberg, U. B.

U. B. Schallenberg, “Nanostructures versus thin films in the design of antireflection coatings,” Proc. SPIE 8168, 81681N (2011).

Schift, H.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Schubert, E. F. S.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schulz, U.

Shields, P. A.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Southwell, W. H.

Sun, C.-H.

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Vakil, H.

Varga, M. G.

Wang, W. N.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Wassermann, E. F.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Appl. Opt. (3)

Appl. Phys. Lett. (2)

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000).
[CrossRef]

Microsyst. Technol. (1)

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[CrossRef]

Nanotechnology (2)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Express (2)

Opt. Lett. (2)

Proc. Lond. Math. Soc. (1)

J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11, 51–56 (1880).

Proc. SPIE (1)

U. B. Schallenberg, “Nanostructures versus thin films in the design of antireflection coatings,” Proc. SPIE 8168, 81681N (2011).

Sens. Actuators A Phys. (1)

H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A Phys. 83(1–3), 130–135 (2000).
[CrossRef]

Other (2)

A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 2001), Chap. 15.

M. S. Rill, Three-Dimensional Photonic Metamaterials by Direct Laser Writing and Advanced Metallization Techniques (Ph.D. Thesis, Karlsruhe School of Optics & Photonics, 2010), Chap. 3, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018614 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic (drawn to scale) of the gradient-index AR structure – a square grid of hemi-ellipsoidal protrusions (turquoise, made of the photopolymerized IPL resin) are deposited on the glass surface (light blue). The dashed line shows the complete DWL voxel shape. The black scale bar at the bottom is 500 nm long (a). Calculated refractive index of the structure (dashed red line) plotted along the optimum quintic profile (solid black line) (b).

Fig. 2
Fig. 2

Calculated performance of the AR coating deposited on SMF-28 optical fiber for different structure height h (a) and grid spacing d (b). The grid spacing d = 450 nm in (a) and the structure height h = 450 nm in (b).

Fig. 3
Fig. 3

Schematic of the DWL process of the AR structure fabrication (a); the cleaved fiber tip is dipped into the liquid resin. 100 × high numerical aperture objective focuses a beam of NIR femtosecond pulses at the fiber surface. False-color SEM images of the SMF-28 optical fiber with the AR structure covering the central part of the cleaved fiber end (b). Oblique view of the structure (c). Close-up of the AR structure with the array of hemi-ellipsoidal protrusions packed on a square grid (d). The scale bars are 50, 2 and 0.5 μm in (b), (c) and (d), respectively.

Fig. 4
Fig. 4

Schematic of the setup used for the reflectivity measurements, SLD – superluminescent diode, OSA – optical spectrum analyzer (a). Measured reflectivity of the SMF-28 fiber end with (red) and without (green) gradient-index AR coating (ARC, solid lines) plotted along the results of numerical simulations for the fabricated structure (dash-dot lines) (b). Measured far field image of the fiber output with the AR structure (c).

Metrics