Abstract

Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
    [CrossRef]
  2. D. Grischkowsky, S. Keiding, M. Van Exter, C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [CrossRef]
  3. B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  4. P. U. Jepsen, D. G. Cooke, M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
    [CrossRef]
  5. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
    [CrossRef]
  6. N. Nagai, R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
    [CrossRef]
  7. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
    [CrossRef]
  8. B. Scherger, M. Scheller, C. Jansen, M. Koch, K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
    [CrossRef] [PubMed]
  9. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. Planken, O. Bang, P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  10. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002).
    [CrossRef]
  11. Q. Wu, X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
    [CrossRef]
  12. Q. Wu, M. Litz, X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
    [CrossRef]
  13. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
    [CrossRef]
  14. N. Karpowicz, X. Lu, X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56(10), 1137–1150 (2009).
    [CrossRef]
  15. J. Liu, X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009).
    [CrossRef]
  16. M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
    [CrossRef]
  17. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012).
    [CrossRef] [PubMed]
  18. D. J. Cook, R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25(16), 1210–1212 (2000).
    [CrossRef] [PubMed]
  19. K. Y. Kim, A. J. Taylor, J. H. Glownia, G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
    [CrossRef]
  20. N. Karpowicz, X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
    [CrossRef] [PubMed]
  21. A. Nahata, T. F. Heinz, “Detection of freely propagating terahertz radiation by use of optical second-harmonic generation,” Opt. Lett. 23(1), 67–69 (1998).
    [CrossRef] [PubMed]
  22. Y. S. You, T. I. Oh, K. Y. Kim, “Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
    [CrossRef] [PubMed]
  23. P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15(7), 075012 (2013).
    [CrossRef]
  24. I. Pupeza, R. Wilk, M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15(7), 4335–4350 (2007).
    [CrossRef] [PubMed]
  25. P. U. Jepsen, B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
    [CrossRef] [PubMed]
  26. S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. II. Polyethylene,” J. Chem. Phys. 25(3), 549–562 (1956).
    [CrossRef]
  27. J. R. Birch, “The far infrared optical constants of polyethylene,” Infrared Phys. 30(2), 195–197 (1990).
    [CrossRef]
  28. G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
    [CrossRef]
  29. G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977).
    [CrossRef]
  30. P. Dannetun, M. Schott, M. Rei Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
    [CrossRef]
  31. C. Y. Liang, S. Krimm, “Infrared spectra of high polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene,” J. Chem. Phys. 25(3), 563–571 (1956).
    [CrossRef]
  32. V. A. Bershtein, V. A. Ryzhov, “Relationship between molecular characteristics of polymers and parameters of far-infrared spectra,” J. Macromol. Sci. Part B Phys. 23(2), 271–287 (1984).
    [CrossRef]
  33. W. F. X. Frank, H. Fiedler, “On the problem of direct observation of H-bridge interactions in polymers by FIR spectroscopy,” Infrared Phys. 19(3–4), 481–489 (1979).
    [CrossRef]
  34. I. Matsubarai, J. H. Magill, “Lower-frequency infrared spectra and structures of some typical aliphatic polyamides*,” J. Polym. Sci., Polym. Phys. Ed. 11, 1173–1187 (1973).
  35. H. Tadokoro, “Structural studies of polyesters. II. Far-infrared spectra of aliphatic polyesters: comparison with α-polyamides,” J. Chem. Phys. 49(8), 3359–3373 (1968).
    [CrossRef]
  36. E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40(16), 4659–4665 (1999).
    [CrossRef]
  37. M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University, 2002).

2013 (1)

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15(7), 075012 (2013).
[CrossRef]

2012 (3)

Y. S. You, T. I. Oh, K. Y. Kim, “Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[CrossRef] [PubMed]

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012).
[CrossRef] [PubMed]

2011 (4)

P. U. Jepsen, D. G. Cooke, M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

B. Scherger, M. Scheller, C. Jansen, M. Koch, K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

2009 (4)

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. Planken, O. Bang, P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

N. Karpowicz, X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
[CrossRef] [PubMed]

N. Karpowicz, X. Lu, X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56(10), 1137–1150 (2009).
[CrossRef]

J. Liu, X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009).
[CrossRef]

2008 (2)

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

K. Y. Kim, A. J. Taylor, J. H. Glownia, G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

2007 (1)

2005 (1)

2004 (1)

N. Nagai, R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
[CrossRef]

2002 (2)

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002).
[CrossRef]

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40(16), 4659–4665 (1999).
[CrossRef]

1998 (1)

1997 (1)

Q. Wu, X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
[CrossRef]

1996 (2)

Q. Wu, M. Litz, X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

P. Dannetun, M. Schott, M. Rei Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[CrossRef]

1990 (2)

1988 (1)

D. H. Auston, M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[CrossRef]

1984 (1)

V. A. Bershtein, V. A. Ryzhov, “Relationship between molecular characteristics of polymers and parameters of far-infrared spectra,” J. Macromol. Sci. Part B Phys. 23(2), 271–287 (1984).
[CrossRef]

1979 (1)

W. F. X. Frank, H. Fiedler, “On the problem of direct observation of H-bridge interactions in polymers by FIR spectroscopy,” Infrared Phys. 19(3–4), 481–489 (1979).
[CrossRef]

1977 (1)

G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977).
[CrossRef]

1974 (1)

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
[CrossRef]

1973 (1)

I. Matsubarai, J. H. Magill, “Lower-frequency infrared spectra and structures of some typical aliphatic polyamides*,” J. Polym. Sci., Polym. Phys. Ed. 11, 1173–1187 (1973).

1968 (1)

H. Tadokoro, “Structural studies of polyesters. II. Far-infrared spectra of aliphatic polyesters: comparison with α-polyamides,” J. Chem. Phys. 49(8), 3359–3373 (1968).
[CrossRef]

1956 (2)

C. Y. Liang, S. Krimm, “Infrared spectra of high polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene,” J. Chem. Phys. 25(3), 563–571 (1956).
[CrossRef]

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. II. Polyethylene,” J. Chem. Phys. 25(3), 549–562 (1956).
[CrossRef]

Adam, A. J. L.

Auston, D. H.

D. H. Auston, M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[CrossRef]

Bang, O.

Bershtein, V. A.

V. A. Bershtein, V. A. Ryzhov, “Relationship between molecular characteristics of polymers and parameters of far-infrared spectra,” J. Macromol. Sci. Part B Phys. 23(2), 271–287 (1984).
[CrossRef]

Birch, J. R.

J. R. Birch, “The far infrared optical constants of polyethylene,” Infrared Phys. 30(2), 195–197 (1990).
[CrossRef]

Boerio, F. J.

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
[CrossRef]

Celik, M. A.

Chantry, G. W.

G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977).
[CrossRef]

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
[CrossRef]

Chatterjee, S.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

Chen, Y.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Clark, E. S.

E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40(16), 4659–4665 (1999).
[CrossRef]

Cook, D. J.

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Cudby, M. E. A.

G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977).
[CrossRef]

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
[CrossRef]

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Dabrowski, R.

Dai, J.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Dannetun, P.

P. Dannetun, M. Schott, M. Rei Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[CrossRef]

Dobbertin, T.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002).
[CrossRef]

Fattinger, C.

Ferguson, B.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Fiedler, H.

W. F. X. Frank, H. Fiedler, “On the problem of direct observation of H-bridge interactions in polymers by FIR spectroscopy,” Infrared Phys. 19(3–4), 481–489 (1979).
[CrossRef]

Fischer, B. M.

Fleming, J. W.

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
[CrossRef]

Fletcher, C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Frank, W. F. X.

W. F. X. Frank, H. Fiedler, “On the problem of direct observation of H-bridge interactions in polymers by FIR spectroscopy,” Infrared Phys. 19(3–4), 481–489 (1979).
[CrossRef]

Frenking, G.

Fukasawa, R.

N. Nagai, R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
[CrossRef]

Glownia, J. H.

K. Y. Kim, A. J. Taylor, J. H. Glownia, G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

Grischkowsky, D.

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Heinz, T. F.

Hochstrasser, R. M.

Iwaszczuk, K.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15(7), 075012 (2013).
[CrossRef]

Jansen, C.

B. Scherger, M. Scheller, C. Jansen, M. Koch, K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

Jen, A. K.-Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Jepsen, P. U.

Johnson, K.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Jones, R. G.

G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977).
[CrossRef]

Jung, T.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

Kammoun, A.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002).
[CrossRef]

Karpowicz, N.

N. Karpowicz, X. Lu, X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56(10), 1137–1150 (2009).
[CrossRef]

N. Karpowicz, X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
[CrossRef] [PubMed]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Keiding, S.

Kim, K. Y.

Y. S. You, T. I. Oh, K. Y. Kim, “Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[CrossRef] [PubMed]

K. Y. Kim, A. J. Taylor, J. H. Glownia, G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

Klarskov, P.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15(7), 075012 (2013).
[CrossRef]

Knobloch, P.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002).
[CrossRef]

Koch, M.

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012).
[CrossRef] [PubMed]

P. U. Jepsen, D. G. Cooke, M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

B. Scherger, M. Scheller, C. Jansen, M. Koch, K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

I. Pupeza, R. Wilk, M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15(7), 4335–4350 (2007).
[CrossRef] [PubMed]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002).
[CrossRef]

Kraft, D.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

Krimm, S.

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. II. Polyethylene,” J. Chem. Phys. 25(3), 549–562 (1956).
[CrossRef]

C. Y. Liang, S. Krimm, “Infrared spectra of high polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene,” J. Chem. Phys. 25(3), 563–571 (1956).
[CrossRef]

Kula, P.

Lavrinenko, A. V.

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Lesimple, A.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Liang, C. Y.

C. Y. Liang, S. Krimm, “Infrared spectra of high polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene,” J. Chem. Phys. 25(3), 563–571 (1956).
[CrossRef]

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. II. Polyethylene,” J. Chem. Phys. 25(3), 549–562 (1956).
[CrossRef]

Litz, M.

Q. Wu, M. Litz, X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

Liu, J.

J. Liu, X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009).
[CrossRef]

Lu, X.

N. Karpowicz, X. Lu, X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56(10), 1137–1150 (2009).
[CrossRef]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Magill, J. H.

I. Matsubarai, J. H. Magill, “Lower-frequency infrared spectra and structures of some typical aliphatic polyamides*,” J. Polym. Sci., Polym. Phys. Ed. 11, 1173–1187 (1973).

Malureanu, R.

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Mamer, O.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Matsubarai, I.

I. Matsubarai, J. H. Magill, “Lower-frequency infrared spectra and structures of some typical aliphatic polyamides*,” J. Polym. Sci., Polym. Phys. Ed. 11, 1173–1187 (1973).

Nagai, N.

N. Nagai, R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
[CrossRef]

Nahata, A.

Nicol, E. A.

G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977).
[CrossRef]

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
[CrossRef]

Nielsen, K.

Novitsky, A.

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Nuss, M. C.

D. H. Auston, M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[CrossRef]

Oh, T. I.

Y. S. You, T. I. Oh, K. Y. Kim, “Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[CrossRef] [PubMed]

Planken, P. C.

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Popescu, A.

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Price-Gallagher, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Pupeza, I.

Rasmussen, H. K.

Rei Vilar, M.

P. Dannetun, M. Schott, M. Rei Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[CrossRef]

Reuter, M.

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012).
[CrossRef] [PubMed]

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

Rodriguez, G.

K. Y. Kim, A. J. Taylor, J. H. Glownia, G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

Ryzhov, V. A.

V. A. Bershtein, V. A. Ryzhov, “Relationship between molecular characteristics of polymers and parameters of far-infrared spectra,” J. Macromol. Sci. Part B Phys. 23(2), 271–287 (1984).
[CrossRef]

Savastru, D.

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Scheller, M.

Scherger, B.

Schott, M.

P. Dannetun, M. Schott, M. Rei Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[CrossRef]

Strikwerda, A. C.

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15(7), 075012 (2013).
[CrossRef]

Sutherland, G. B. B. M.

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. II. Polyethylene,” J. Chem. Phys. 25(3), 549–562 (1956).
[CrossRef]

Tadokoro, H.

H. Tadokoro, “Structural studies of polyesters. II. Far-infrared spectra of aliphatic polyesters: comparison with α-polyamides,” J. Chem. Phys. 49(8), 3359–3373 (1968).
[CrossRef]

Taylor, A. J.

K. Y. Kim, A. J. Taylor, J. H. Glownia, G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

Turchinovich, D.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002).
[CrossRef]

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Uhd Jepsen, P.

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Van Exter, M.

Vieweg, N.

Wiesauer, K.

Wietzke, S.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

Wilk, R.

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Willis, H. A.

G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977).
[CrossRef]

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
[CrossRef]

Wu, Q.

Q. Wu, X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
[CrossRef]

Q. Wu, M. Litz, X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

Yamaguchi, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

You, Y. S.

Y. S. You, T. I. Oh, K. Y. Kim, “Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[CrossRef] [PubMed]

Zalkovskij, M.

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Zhang, C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Zhang, L.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Zhang, X. C.

J. Liu, X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009).
[CrossRef]

Q. Wu, M. Litz, X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

Zhang, X.-C.

N. Karpowicz, X. Lu, X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56(10), 1137–1150 (2009).
[CrossRef]

N. Karpowicz, X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
[CrossRef] [PubMed]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Q. Wu, X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
[CrossRef]

Zhao, H.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Zoffmann Bisgaard, C.

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Q. Wu, X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997).
[CrossRef]

Q. Wu, M. Litz, X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

N. Nagai, R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. H. Auston, M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[CrossRef]

Infrared Phys. (2)

J. R. Birch, “The far infrared optical constants of polyethylene,” Infrared Phys. 30(2), 195–197 (1990).
[CrossRef]

W. F. X. Frank, H. Fiedler, “On the problem of direct observation of H-bridge interactions in polymers by FIR spectroscopy,” Infrared Phys. 19(3–4), 481–489 (1979).
[CrossRef]

J. Appl. Phys. (2)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

J. Liu, X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009).
[CrossRef]

J. Chem. Phys. (3)

H. Tadokoro, “Structural studies of polyesters. II. Far-infrared spectra of aliphatic polyesters: comparison with α-polyamides,” J. Chem. Phys. 49(8), 3359–3373 (1968).
[CrossRef]

C. Y. Liang, S. Krimm, “Infrared spectra of high polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene,” J. Chem. Phys. 25(3), 563–571 (1956).
[CrossRef]

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. II. Polyethylene,” J. Chem. Phys. 25(3), 549–562 (1956).
[CrossRef]

J. Macromol. Sci. Part B Phys. (1)

V. A. Bershtein, V. A. Ryzhov, “Relationship between molecular characteristics of polymers and parameters of far-infrared spectra,” J. Macromol. Sci. Part B Phys. 23(2), 271–287 (1984).
[CrossRef]

J. Mod. Opt. (1)

N. Karpowicz, X. Lu, X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56(10), 1137–1150 (2009).
[CrossRef]

J. Mol. Struct. (1)

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Polym. Sci., Polym. Phys. Ed. (1)

I. Matsubarai, J. H. Magill, “Lower-frequency infrared spectra and structures of some typical aliphatic polyamides*,” J. Polym. Sci., Polym. Phys. Ed. 11, 1173–1187 (1973).

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Nat. Mater. (1)

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Nat. Photonics (1)

K. Y. Kim, A. J. Taylor, J. H. Glownia, G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

New J. Phys. (1)

P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15(7), 075012 (2013).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

Y. S. You, T. I. Oh, K. Y. Kim, “Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[CrossRef] [PubMed]

N. Karpowicz, X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
[CrossRef] [PubMed]

Polymer (3)

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974).
[CrossRef]

G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977).
[CrossRef]

E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40(16), 4659–4665 (1999).
[CrossRef]

Thin Solid Films (1)

P. Dannetun, M. Schott, M. Rei Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[CrossRef]

Other (1)

M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ultra-broadband THz TDS setup based on THz plasma generation via two-color laser mixing in air and ABCD detection.

Fig. 2
Fig. 2

(a) THz pulses generated and detected in our THz air photonics spectrometer in case of free propagation in air (black) and when transmitted through a 0.47 mm thick sample of PA6 (red). The pulses were normalized to the maximum field of the reference. (b) The corresponding amplitude spectra, obtained from discrete Fourier transforms of the time domain traces.

Fig. 3
Fig. 3

LDPE: (a) Real (green) and imaginary (magenta) part of the dielectric function. (b) Absorption coefficient (red-left ordinate axis) and refractive index (blue-right ordinate axis). Dashed black line is the maximum absorption that can be reliably measured by our spectrometer (left ordinate axis).

Fig. 4
Fig. 4

TOPAS®: (a) Real (green) and imaginary (magenta) part of the dielectric function. (b) Absorption coefficient (red-left ordinate axis) and refractive index (blue-right ordinate axis). Dashed black line is the maximum absorption that can be reliably measured by our spectrometer (left ordinate axis).

Fig. 5
Fig. 5

PTFE (Teflon®): (a) Real (green) and imaginary (magenta) part of the dielectric function. Black lines are fits based on two Lorentzian resonant modes. (b) Absorption coefficient (red-left ordinate axis) and refractive index (blue-right ordinate axis). Black lines are the re-calculated index and absorption coefficient. Dashed black line is the maximum absorption that can be reliably measured by our spectrometer (left ordinate axis).

Fig. 6
Fig. 6

PA6: (a) Real (green) and imaginary (magenta) part of the dielectric function. Black lines are fits based on six Lorentzian modes. (b) Absorption coefficient (red-left ordinate axis) and refractive index (blue-right ordinate axis). Black solid lines are the re-calculated index and absorption coefficient. Dashed black line is the maximum absorption that can be reliably measured by our spectrometer (left ordinate axis).

Tables (2)

Tables Icon

Table 1 2-15 THz Refractive Index Variation Range, Absorption Coefficients at the Resonant Frequencies f0, and their Molecular Assignment for Different Polymeric Compounds.

Tables Icon

Table 2 Lorentzian Fit Parameters for the Dielectric Functions of PTFE and PA6.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T( Ω )= E s ( f ) E r ( f ) = 4 n air  n ˜ ( n air + n ˜ ) 2 exp[ i( n ˜ n air ) 2πfd c ]FP( f ),
FP( f )= m=0 N1 { ( n ˜ n air n ˜ + n air ) 2 exp[ 2i n ˜ 2πfd c ] } m .
ϵ ˜ = ϵ + j=1 N Ω j 2 ( ω 0j 2 ω 2 )i γ j ω ,

Metrics