Abstract

Polarization insensitive wavelength conversion of a 40 Gb/s non-return-to-zero (NRZ) differential phase-shift keying (DPSK) data signal is demonstrated using four-wave mixing (FWM) in a silicon nanowire circuit. Polarization independence is achieved using a diversity circuit based on polarization rotators and splitters, which is fabricated by a simple process on the silicon-on-insulator (SOI) platform. Error-free performance is achieved with only 0.5 dB of power penalty compared to the wavelength conversion of a signal with well optimized input polarization. Additionally, data transmission over 161 km standard single-mode fiber (SSMF) is demonstrated at 40 Gb/s using optical phase conjugation (OPC) in the proposed circuit.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ramamurthy, B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
    [CrossRef]
  2. K. Inoue, H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
    [CrossRef]
  3. G.-W. Lu, T. Sakamoto, T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
    [CrossRef] [PubMed]
  4. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
    [CrossRef]
  5. T. Hasegawa, K. Inoue, K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
    [CrossRef]
  6. J. Lu, L. Chen, Z. Dong, Z. Cao, S. Wen, “Polarization insensitive wavelength conversion based on orthogonal pump four-wave mixing for polarization multiplexing signal in high-nonlinear fiber,” J. Lightwave Technol. 27(24), 5767–5774 (2009).
    [CrossRef]
  7. W. Astar, A. S. Lenihan, G. M. Carter, “Polarization-insensitive wavelength conversion by FWM in a highly nonlinear PCF of polarization-scrambled 10-Gb/s RZ-OOK and RZ-DPSK signals,” IEEE Photon. Technol. Lett. 19(20), 1676–1678 (2007).
    [CrossRef]
  8. M. F. Huang, J. Yu, Y. K. Huang, E. Ip, G. K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photon. Technol. Lett. 22(24), 1832–1834 (2010).
    [CrossRef]
  9. J. M. Tang, K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
    [CrossRef]
  10. C. M. Gallep, O. Raz, and H. J. S. Dorren, “Polarization independent dual wavelength converter based on FWM in a single semiconductor optical amplifier,” in Optical Fiber Communication Conference, OFC 2010, paper OWP2.
    [CrossRef]
  11. I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
    [CrossRef]
  12. S. L. Jansen, D. Van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G.-D. Khoe, H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
    [CrossRef]
  13. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009).
    [CrossRef] [PubMed]
  14. H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
    [CrossRef]
  15. S. Gao, X. Zhang, Z. Li, S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
    [CrossRef]
  16. M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express 20(15), 16374–16380 (2012).
    [CrossRef]
  17. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  18. Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett. 23(23), 1808–1810 (2011).
    [CrossRef]
  19. Y. Ding, B. Huang, H. Ou, F. Da Ros, C. Peucheret, “Polarization diversity DPSK demodulator on the silicon-on-insulator platform with simple fabrication,” Opt. Express 21(6), 7828–7834 (2013).
    [CrossRef] [PubMed]
  20. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [CrossRef] [PubMed]
  21. Y. Ding, H. Ou, C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38(8), 1227–1229 (2013).
    [CrossRef] [PubMed]
  22. D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [CrossRef] [PubMed]
  23. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [CrossRef] [PubMed]
  24. M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
    [CrossRef]
  25. Y. Ding, H. Ou, C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [CrossRef] [PubMed]

2014 (1)

2013 (4)

2012 (1)

2011 (2)

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[CrossRef]

D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[CrossRef] [PubMed]

2010 (4)

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

S. Gao, X. Zhang, Z. Li, S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

M. F. Huang, J. Yu, Y. K. Huang, E. Ip, G. K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photon. Technol. Lett. 22(24), 1832–1834 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (2)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

W. Astar, A. S. Lenihan, G. M. Carter, “Polarization-insensitive wavelength conversion by FWM in a highly nonlinear PCF of polarization-scrambled 10-Gb/s RZ-OOK and RZ-DPSK signals,” IEEE Photon. Technol. Lett. 19(20), 1676–1678 (2007).
[CrossRef]

2006 (1)

2000 (1)

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

1999 (1)

J. M. Tang, K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
[CrossRef]

1998 (1)

B. Ramamurthy, B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
[CrossRef]

1994 (1)

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[CrossRef]

1993 (1)

T. Hasegawa, K. Inoue, K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

1992 (1)

K. Inoue, H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Astar, W.

W. Astar, A. S. Lenihan, G. M. Carter, “Polarization-insensitive wavelength conversion by FWM in a highly nonlinear PCF of polarization-scrambled 10-Gb/s RZ-OOK and RZ-DPSK signals,” IEEE Photon. Technol. Lett. 19(20), 1676–1678 (2007).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Boffi, P.

Bowers, J. E.

Brener, I.

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

Calabro, S.

Cao, Z.

Carter, G. M.

W. Astar, A. S. Lenihan, G. M. Carter, “Polarization-insensitive wavelength conversion by FWM in a highly nonlinear PCF of polarization-scrambled 10-Gb/s RZ-OOK and RZ-DPSK signals,” IEEE Photon. Technol. Lett. 19(20), 1676–1678 (2007).
[CrossRef]

Chaban, E.

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

Chang, G. K.

M. F. Huang, J. Yu, Y. K. Huang, E. Ip, G. K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photon. Technol. Lett. 22(24), 1832–1834 (2010).
[CrossRef]

Chen, L.

Chou, M. H.

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

Cristiani, I.

Da Ros, F.

Dai, D.

de Waardt, H.

Degiorgio, V.

Ding, Y.

Dong, Z.

Fejer, M. M.

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

Ferrario, M.

Fukuda, H.

Galili, M.

Gao, S.

S. Gao, X. Zhang, Z. Li, S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

Hasegawa, T.

T. Hasegawa, K. Inoue, K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

He, S.

S. Gao, X. Zhang, Z. Li, S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

Hu, H.

M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express 20(15), 16374–16380 (2012).
[CrossRef]

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

Huang, B.

Huang, D.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[CrossRef]

Huang, M. F.

M. F. Huang, J. Yu, Y. K. Huang, E. Ip, G. K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photon. Technol. Lett. 22(24), 1832–1834 (2010).
[CrossRef]

Huang, Y. K.

M. F. Huang, J. Yu, Y. K. Huang, E. Ip, G. K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photon. Technol. Lett. 22(24), 1832–1834 (2010).
[CrossRef]

Huettl, B.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

Hvam, J. M.

M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express 20(15), 16374–16380 (2012).
[CrossRef]

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Inoue, K.

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[CrossRef]

T. Hasegawa, K. Inoue, K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

K. Inoue, H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Ip, E.

M. F. Huang, J. Yu, Y. K. Huang, E. Ip, G. K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photon. Technol. Lett. 22(24), 1832–1834 (2010).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Itabashi, S.

Jansen, S. L.

Jeppesen, P.

Ji, H.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Kawanishi, T.

Khoe, G.-D.

Kosinski, S.

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

Krummrich, P. M.

Langrock, C.

Lenihan, A. S.

W. Astar, A. S. Lenihan, G. M. Carter, “Polarization-insensitive wavelength conversion by FWM in a highly nonlinear PCF of polarization-scrambled 10-Gb/s RZ-OOK and RZ-DPSK signals,” IEEE Photon. Technol. Lett. 19(20), 1676–1678 (2007).
[CrossRef]

Li, Z.

S. Gao, X. Zhang, Z. Li, S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

Liu, L.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[CrossRef]

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Lu, G.-W.

Lu, J.

Ludwig, R.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

Marazzi, L.

Martelli, P.

Martinelli, M.

Minzioni, P.

Mukherjee, B.

B. Ramamurthy, B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
[CrossRef]

Nouroozi, R.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

Oda, K.

T. Hasegawa, K. Inoue, K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

Ou, H.

Oxenløwe, L. K.

Parameswaran, K. R.

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

Parolari, P.

Peucheret, C.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Pruitt, D. L.

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

Pu, M.

M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express 20(15), 16374–16380 (2012).
[CrossRef]

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Pusino, V.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Ramamurthy, B.

B. Ramamurthy, B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
[CrossRef]

Sakamoto, T.

Schmidt-Langhorst, C.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

Schubert, C.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

Shinojima, H.

Shore, K. A.

J. M. Tang, K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
[CrossRef]

Siano, R.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Sohler, W.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

S. L. Jansen, D. Van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G.-D. Khoe, H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[CrossRef]

Spinnler, B.

Suche, H.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

S. L. Jansen, D. Van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G.-D. Khoe, H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[CrossRef]

Tang, J. M.

J. M. Tang, K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
[CrossRef]

Toba, H.

K. Inoue, H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Tsuchizawa, T.

Van den Borne, D.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Wen, S.

Xu, J.

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[CrossRef] [PubMed]

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[CrossRef]

Yamada, K.

Yu, J.

M. F. Huang, J. Yu, Y. K. Huang, E. Ip, G. K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photon. Technol. Lett. 22(24), 1832–1834 (2010).
[CrossRef]

Yvind, K.

M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express 20(15), 16374–16380 (2012).
[CrossRef]

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[CrossRef]

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Zhang, X.

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[CrossRef]

S. Gao, X. Zhang, Z. Li, S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

Appl. Phys. B (1)

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010).
[CrossRef]

Electron. Lett. (1)

I. Brener, M. H. Chou, E. Chaban, K. R. Parameswaran, M. M. Fejer, S. Kosinski, D. L. Pruitt, “Polarisation-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides,” Electron. Lett. 36(1), 66–67 (2000).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

B. Ramamurthy, B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Gao, X. Zhang, Z. Li, S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett. 23(23), 1808–1810 (2011).
[CrossRef]

K. Inoue, H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

T. Hasegawa, K. Inoue, K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

W. Astar, A. S. Lenihan, G. M. Carter, “Polarization-insensitive wavelength conversion by FWM in a highly nonlinear PCF of polarization-scrambled 10-Gb/s RZ-OOK and RZ-DPSK signals,” IEEE Photon. Technol. Lett. 19(20), 1676–1678 (2007).
[CrossRef]

M. F. Huang, J. Yu, Y. K. Huang, E. Ip, G. K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photon. Technol. Lett. 22(24), 1832–1834 (2010).
[CrossRef]

J. M. Tang, K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
[CrossRef]

J. Lightwave Technol. (3)

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Opt. Commun. (1)

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Opt. Express (7)

D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[CrossRef] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[CrossRef] [PubMed]

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express 20(15), 16374–16380 (2012).
[CrossRef]

Y. Ding, B. Huang, H. Ou, F. Da Ros, C. Peucheret, “Polarization diversity DPSK demodulator on the silicon-on-insulator platform with simple fabrication,” Opt. Express 21(6), 7828–7834 (2013).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[CrossRef] [PubMed]

G.-W. Lu, T. Sakamoto, T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (1)

C. M. Gallep, O. Raz, and H. J. S. Dorren, “Polarization independent dual wavelength converter based on FWM in a single semiconductor optical amplifier,” in Optical Fiber Communication Conference, OFC 2010, paper OWP2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Microscope image of the whole polarization insensitive wavelength converter. (b) Schematic structure of the PSR.

Fig. 2
Fig. 2

(a) Schematic structure of the device used for the characterization of the PSR. (b) Measured coupling efficiencies to the two output ports for TE0 and TM0 inputs.

Fig. 3
Fig. 3

Experimental setup for polarization-insensitive wavelength conversion. Insets a) and b) show the eye diagrams of the signal at the transmitter output and of the converted idler, respectively. 81 km and 80 km SSMF were added before and after the wavelength converter in the mid-span spectral inversion experiment.

Fig. 4
Fig. 4

(a) Spectra at the input and output of the device and spectrum of the filtered and amplified idler. (b) Bit-error-ratio (BER) curves for the back-to-back (B2B) and wavelength converted 40 Gb/s DPSK signals with optimized polarization and with the polarization scrambler (PS) turned on. Eye diagrams of the demodulated (c) non-scrambled B2B signal, (d) scrambled B2B signal, (e) idler when the input signal is not scrambled, and (f) idler when the input signal is scrambled. All eye diagrams are recorded for 29 dBm received power. (g) Eye diagram of the idler converted in a straight 1 cm long silicon waveguide when the state-of-polarization of the input signal is scrambled.

Fig. 5
Fig. 5

(a) Bit-error-ratio (BER) curves for the transmission of a 40 Gb/s DPSK signal over 161 km SMF with and without polarization scrambler (PS) at the link input. Eye diagrams after transmission of the demodulated signals without (b) and with (c) polarization scrambler at the link input. Both eye diagrams are recorded for 25 dBm received power. (d) Eye diagram of a signal transmitted over 81 km SSMF without optical phase conjugator (OPC).

Metrics