Abstract

Near-infrared amplified spontaneous emission (ASE) from an optically-pumped dye-doped polymeric slab waveguide, consisting of IR-140 in PMMA on a glass substrate, has been characterised. The ASE gain was measured using the variable stripe length method. Linewidth narrowing with increasing pump intensity was observed, indicating ASE gain in this material. The effects of the dye concentration and pump intensity on the gain were investigated under linear operation. The maximum achieved gain coefficient is γ ~68 cm−1 for a film with 0.8wt % of IR-140 to PMMA for a pump intensity of 43.4 mJ/cm2. The polarisation dependence of the ASE gain was also investigated by measuring the gain coefficient of orthogonal TE and TM modes and varying the pump polarisation relative to the amplifier length. It was observed that there is some degree of gain anisotropy when the pump polarisation is aligned perpendicular to the length, but that the gain was isotropic when the pump polarisation is aligned parallel the length. The applicability of IR-140 doped PMMA for active plasmonic applications is discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
    [CrossRef]
  2. V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
    [CrossRef]
  3. G. Somasundaram, A. Ramalingam, “Gain studies of Rhodamine 6G dye doped polymer laser,” J. Photochem. Photobiol. A 125(1-3), 93–98 (1999).
    [CrossRef]
  4. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
    [CrossRef]
  5. M. Karimi, N. Granpayeh, M. K. Morraveg Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78(3-4), 387–396 (2004).
    [CrossRef]
  6. A. Costela, O. García, L. Cerdán, I. García-Moreno, R. Sastre, “Amplified spontaneous emission and optical gain measurements from pyrromethene 567--doped polymer waveguides and quasi-waveguides,” Opt. Express 16(10), 7023–7036 (2008).
    [CrossRef] [PubMed]
  7. J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
    [CrossRef]
  8. K. Yamashita, T. Kuro, K. Oe, H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye doped polymeric waveguide,” Appl. Phys. Lett. 88(24), 241110 (2006).
    [CrossRef]
  9. S. Yuyama, T. Nakajima, K. Yamashita, K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93(2), 023306 (2008).
    [CrossRef]
  10. E. K. Keshmarzi, R. N. Tait, P. Berini, “Long-range surface plasmon single-mode laser concepts,” J. Appl. Phys. 112(6), 063115 (2012).
    [CrossRef]
  11. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
    [CrossRef] [PubMed]
  12. J. K. Kitur, V. A. Podolskiy, M. A. Noginov, “Stimulated Emission of Surface Plasmon Polaritons in a Microcylinder Cavity,” Phys. Rev. Lett. 106(18), 183903 (2011).
    [CrossRef] [PubMed]
  13. M. C. Gather, K. Meerholz, N. Danz, K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
    [CrossRef]
  14. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [CrossRef] [PubMed]
  15. J. K. Kitur, G. Zhu, Y. A. Barnakov, M. A. Noginov, “Stimulated emission of surface plasmon polaritons on smooth and corrugated silver surfaces,” J. Opt. 14(11), 114015 (2012).
    [CrossRef]
  16. S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, S. A. Maier, “Confined Surface Plasmon-Polariton Amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
    [CrossRef] [PubMed]
  17. I. De Leon, P. Berini, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
  18. I. De Leon, P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [CrossRef]
  19. L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
    [CrossRef]
  20. I. De Leon, P. Berini, “Spontaneous emission in long-range surface plasmon-polariton amplifiers,” Phys. Rev. B 83(8), 081414 (2011).
    [CrossRef]
  21. G. Somasundaram, A. Ramalingam, “Gain studies of Coumarin 503 dye-doped polymer laser,” Opt. Lasers Eng. 33(2), 157–163 (2000).
    [CrossRef]
  22. K. C. Reyzer, L. W. Casperson, “Polarization characteristics of dye-laser amplifiers II. Isotropic molecular distributions,” J. Appl. Phys. 51(12), 6083 (1980).
    [CrossRef]
  23. B. Valeur, “Molecular Fluorescence, Principles and Applications,” Wiley-VCH, (2002).
  24. G. Mourou, M. M. Denariez-Roberge, “Polarization of Fluorescence and Bleaching of Dyes in a High-Viscosity Solvent,” IEEE. J. Quantum Electron. 9(8), 787–790 (1973).
    [CrossRef]

2013

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, S. A. Maier, “Confined Surface Plasmon-Polariton Amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[CrossRef] [PubMed]

2012

I. De Leon, P. Berini, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).

E. K. Keshmarzi, R. N. Tait, P. Berini, “Long-range surface plasmon single-mode laser concepts,” J. Appl. Phys. 112(6), 063115 (2012).
[CrossRef]

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

J. K. Kitur, G. Zhu, Y. A. Barnakov, M. A. Noginov, “Stimulated emission of surface plasmon polaritons on smooth and corrugated silver surfaces,” J. Opt. 14(11), 114015 (2012).
[CrossRef]

2011

I. De Leon, P. Berini, “Spontaneous emission in long-range surface plasmon-polariton amplifiers,” Phys. Rev. B 83(8), 081414 (2011).
[CrossRef]

J. K. Kitur, V. A. Podolskiy, M. A. Noginov, “Stimulated Emission of Surface Plasmon Polaritons in a Microcylinder Cavity,” Phys. Rev. Lett. 106(18), 183903 (2011).
[CrossRef] [PubMed]

2010

M. C. Gather, K. Meerholz, N. Danz, K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

I. De Leon, P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

2008

A. Costela, O. García, L. Cerdán, I. García-Moreno, R. Sastre, “Amplified spontaneous emission and optical gain measurements from pyrromethene 567--doped polymer waveguides and quasi-waveguides,” Opt. Express 16(10), 7023–7036 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

S. Yuyama, T. Nakajima, K. Yamashita, K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93(2), 023306 (2008).
[CrossRef]

2006

K. Yamashita, T. Kuro, K. Oe, H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye doped polymeric waveguide,” Appl. Phys. Lett. 88(24), 241110 (2006).
[CrossRef]

2004

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

M. Karimi, N. Granpayeh, M. K. Morraveg Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78(3-4), 387–396 (2004).
[CrossRef]

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[CrossRef]

2000

G. Somasundaram, A. Ramalingam, “Gain studies of Coumarin 503 dye-doped polymer laser,” Opt. Lasers Eng. 33(2), 157–163 (2000).
[CrossRef]

1999

G. Somasundaram, A. Ramalingam, “Gain studies of Rhodamine 6G dye doped polymer laser,” J. Photochem. Photobiol. A 125(1-3), 93–98 (1999).
[CrossRef]

1997

V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

1980

K. C. Reyzer, L. W. Casperson, “Polarization characteristics of dye-laser amplifiers II. Isotropic molecular distributions,” J. Appl. Phys. 51(12), 6083 (1980).
[CrossRef]

1973

G. Mourou, M. M. Denariez-Roberge, “Polarization of Fluorescence and Bleaching of Dyes in a High-Viscosity Solvent,” IEEE. J. Quantum Electron. 9(8), 787–790 (1973).
[CrossRef]

Anni, M.

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

Barnakov, Y. A.

J. K. Kitur, G. Zhu, Y. A. Barnakov, M. A. Noginov, “Stimulated emission of surface plasmon polaritons on smooth and corrugated silver surfaces,” J. Opt. 14(11), 114015 (2012).
[CrossRef]

Beck, T.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Berini, P.

E. K. Keshmarzi, R. N. Tait, P. Berini, “Long-range surface plasmon single-mode laser concepts,” J. Appl. Phys. 112(6), 063115 (2012).
[CrossRef]

I. De Leon, P. Berini, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).

I. De Leon, P. Berini, “Spontaneous emission in long-range surface plasmon-polariton amplifiers,” Phys. Rev. B 83(8), 081414 (2011).
[CrossRef]

I. De Leon, P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Bettotti, P.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[CrossRef]

Blyth, R. I. R.

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

Bradley, D. D. C.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, S. A. Maier, “Confined Surface Plasmon-Polariton Amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[CrossRef] [PubMed]

Bulovic, V.

V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Casperson, L. W.

K. C. Reyzer, L. W. Casperson, “Polarization characteristics of dye-laser amplifiers II. Isotropic molecular distributions,” J. Appl. Phys. 51(12), 6083 (1980).
[CrossRef]

Cazzanelli, M.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[CrossRef]

Cerdán, L.

Chénais, S.

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Christiansen, M. B.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Cingolani, R.

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

Costela, A.

Dal Negro, L.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[CrossRef]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

De Leon, I.

I. De Leon, P. Berini, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).

I. De Leon, P. Berini, “Spontaneous emission in long-range surface plasmon-polariton amplifiers,” Phys. Rev. B 83(8), 081414 (2011).
[CrossRef]

I. De Leon, P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Denariez-Roberge, M. M.

G. Mourou, M. M. Denariez-Roberge, “Polarization of Fluorescence and Bleaching of Dyes in a High-Viscosity Solvent,” IEEE. J. Quantum Electron. 9(8), 787–790 (1973).
[CrossRef]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Eschenbaum, C.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Forget, S.

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

Forrest, S. R.

V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Fuchs, J.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

García, O.

García-Moreno, I.

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Gigli, G.

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

Granpayeh, N.

M. Karimi, N. Granpayeh, M. K. Morraveg Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78(3-4), 387–396 (2004).
[CrossRef]

Grossmann, T.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Hauser, M.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Kalt, H.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Karimi, M.

M. Karimi, N. Granpayeh, M. K. Morraveg Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78(3-4), 387–396 (2004).
[CrossRef]

Kéna-Cohen, S.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, S. A. Maier, “Confined Surface Plasmon-Polariton Amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[CrossRef] [PubMed]

Keshmarzi, E. K.

E. K. Keshmarzi, R. N. Tait, P. Berini, “Long-range surface plasmon single-mode laser concepts,” J. Appl. Phys. 112(6), 063115 (2012).
[CrossRef]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Kitur, J. K.

J. K. Kitur, G. Zhu, Y. A. Barnakov, M. A. Noginov, “Stimulated emission of surface plasmon polaritons on smooth and corrugated silver surfaces,” J. Opt. 14(11), 114015 (2012).
[CrossRef]

J. K. Kitur, V. A. Podolskiy, M. A. Noginov, “Stimulated Emission of Surface Plasmon Polaritons in a Microcylinder Cavity,” Phys. Rev. Lett. 106(18), 183903 (2011).
[CrossRef] [PubMed]

Klinkhammer, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Kristensen, A.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Kuro, T.

K. Yamashita, T. Kuro, K. Oe, H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye doped polymeric waveguide,” Appl. Phys. Lett. 88(24), 241110 (2006).
[CrossRef]

Lattante, S.

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

Lemmer, U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Leosson, K.

M. C. Gather, K. Meerholz, N. Danz, K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Maier, S. A.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, S. A. Maier, “Confined Surface Plasmon-Polariton Amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[CrossRef] [PubMed]

Mappes, T.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Mayy, M.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Morraveg Farshi, M. K.

M. Karimi, N. Granpayeh, M. K. Morraveg Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78(3-4), 387–396 (2004).
[CrossRef]

Mourou, G.

G. Mourou, M. M. Denariez-Roberge, “Polarization of Fluorescence and Bleaching of Dyes in a High-Viscosity Solvent,” IEEE. J. Quantum Electron. 9(8), 787–790 (1973).
[CrossRef]

Nakajima, T.

S. Yuyama, T. Nakajima, K. Yamashita, K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93(2), 023306 (2008).
[CrossRef]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Nienhaus, G. U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Noginov, M. A.

J. K. Kitur, G. Zhu, Y. A. Barnakov, M. A. Noginov, “Stimulated emission of surface plasmon polaritons on smooth and corrugated silver surfaces,” J. Opt. 14(11), 114015 (2012).
[CrossRef]

J. K. Kitur, V. A. Podolskiy, M. A. Noginov, “Stimulated Emission of Surface Plasmon Polaritons in a Microcylinder Cavity,” Phys. Rev. Lett. 106(18), 183903 (2011).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Oe, K.

S. Yuyama, T. Nakajima, K. Yamashita, K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93(2), 023306 (2008).
[CrossRef]

K. Yamashita, T. Kuro, K. Oe, H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye doped polymeric waveguide,” Appl. Phys. Lett. 88(24), 241110 (2006).
[CrossRef]

Pacifici, D.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[CrossRef]

Pavesi, L.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[CrossRef]

Pisignano, D.

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

Podolskiy, V. A.

J. K. Kitur, V. A. Podolskiy, M. A. Noginov, “Stimulated Emission of Surface Plasmon Polaritons in a Microcylinder Cavity,” Phys. Rev. Lett. 106(18), 183903 (2011).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Ramalingam, A.

G. Somasundaram, A. Ramalingam, “Gain studies of Coumarin 503 dye-doped polymer laser,” Opt. Lasers Eng. 33(2), 157–163 (2000).
[CrossRef]

G. Somasundaram, A. Ramalingam, “Gain studies of Rhodamine 6G dye doped polymer laser,” J. Photochem. Photobiol. A 125(1-3), 93–98 (1999).
[CrossRef]

Reyzer, K. C.

K. C. Reyzer, L. W. Casperson, “Polarization characteristics of dye-laser amplifiers II. Isotropic molecular distributions,” J. Appl. Phys. 51(12), 6083 (1980).
[CrossRef]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Sastre, R.

Schleede, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Somasundaram, G.

G. Somasundaram, A. Ramalingam, “Gain studies of Coumarin 503 dye-doped polymer laser,” Opt. Lasers Eng. 33(2), 157–163 (2000).
[CrossRef]

G. Somasundaram, A. Ramalingam, “Gain studies of Rhodamine 6G dye doped polymer laser,” J. Photochem. Photobiol. A 125(1-3), 93–98 (1999).
[CrossRef]

Stavrinou, P. N.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, S. A. Maier, “Confined Surface Plasmon-Polariton Amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[CrossRef] [PubMed]

Tait, R. N.

E. K. Keshmarzi, R. N. Tait, P. Berini, “Long-range surface plasmon single-mode laser concepts,” J. Appl. Phys. 112(6), 063115 (2012).
[CrossRef]

Thompson, J.

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

Vannahme, Ch.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Yamashita, K.

S. Yuyama, T. Nakajima, K. Yamashita, K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93(2), 023306 (2008).
[CrossRef]

K. Yamashita, T. Kuro, K. Oe, H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye doped polymeric waveguide,” Appl. Phys. Lett. 88(24), 241110 (2006).
[CrossRef]

Yanagi, H.

K. Yamashita, T. Kuro, K. Oe, H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye doped polymeric waveguide,” Appl. Phys. Lett. 88(24), 241110 (2006).
[CrossRef]

Yuan, H. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Yuyama, S.

S. Yuyama, T. Nakajima, K. Yamashita, K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93(2), 023306 (2008).
[CrossRef]

Zhu, G.

J. K. Kitur, G. Zhu, Y. A. Barnakov, M. A. Noginov, “Stimulated emission of surface plasmon polaritons on smooth and corrugated silver surfaces,” J. Opt. 14(11), 114015 (2012).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Appl. Phys. B

M. Karimi, N. Granpayeh, M. K. Morraveg Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78(3-4), 387–396 (2004).
[CrossRef]

Appl. Phys. Lett.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[CrossRef]

K. Yamashita, T. Kuro, K. Oe, H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye doped polymeric waveguide,” Appl. Phys. Lett. 88(24), 241110 (2006).
[CrossRef]

S. Yuyama, T. Nakajima, K. Yamashita, K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93(2), 023306 (2008).
[CrossRef]

IEEE. J. Quantum Electron.

G. Mourou, M. M. Denariez-Roberge, “Polarization of Fluorescence and Bleaching of Dyes in a High-Viscosity Solvent,” IEEE. J. Quantum Electron. 9(8), 787–790 (1973).
[CrossRef]

J. Appl. Phys.

K. C. Reyzer, L. W. Casperson, “Polarization characteristics of dye-laser amplifiers II. Isotropic molecular distributions,” J. Appl. Phys. 51(12), 6083 (1980).
[CrossRef]

E. K. Keshmarzi, R. N. Tait, P. Berini, “Long-range surface plasmon single-mode laser concepts,” J. Appl. Phys. 112(6), 063115 (2012).
[CrossRef]

J. Opt.

J. K. Kitur, G. Zhu, Y. A. Barnakov, M. A. Noginov, “Stimulated emission of surface plasmon polaritons on smooth and corrugated silver surfaces,” J. Opt. 14(11), 114015 (2012).
[CrossRef]

J. Photochem. Photobiol. A

G. Somasundaram, A. Ramalingam, “Gain studies of Rhodamine 6G dye doped polymer laser,” J. Photochem. Photobiol. A 125(1-3), 93–98 (1999).
[CrossRef]

Nano Lett.

S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, S. A. Maier, “Confined Surface Plasmon-Polariton Amplifiers,” Nano Lett. 13(3), 1323–1329 (2013).
[CrossRef] [PubMed]

Nat. Photonics

I. De Leon, P. Berini, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).

I. De Leon, P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

M. C. Gather, K. Meerholz, N. Danz, K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Nature

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Opt. Commun.

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

G. Somasundaram, A. Ramalingam, “Gain studies of Coumarin 503 dye-doped polymer laser,” Opt. Lasers Eng. 33(2), 157–163 (2000).
[CrossRef]

Phys. Rev. B

I. De Leon, P. Berini, “Spontaneous emission in long-range surface plasmon-polariton amplifiers,” Phys. Rev. B 83(8), 081414 (2011).
[CrossRef]

Phys. Rev. Lett.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

J. K. Kitur, V. A. Podolskiy, M. A. Noginov, “Stimulated Emission of Surface Plasmon Polaritons in a Microcylinder Cavity,” Phys. Rev. Lett. 106(18), 183903 (2011).
[CrossRef] [PubMed]

Polym. Int.

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

Synth. Met.

J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004).
[CrossRef]

Other

B. Valeur, “Molecular Fluorescence, Principles and Applications,” Wiley-VCH, (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup for ASE gain measurements showing how the pump is applied to the sample under test. (b) 3D sketch of sample with the pump stripe and a reference coordinate.

Fig. 2
Fig. 2

Growing ASE spectra in optically pumped IR-140-doped polymeric waveguides at various pump intensities (mJ/cm2) for (a) Sample A, (b) Sample B, (c) Sample C and (d) Sample D.

Fig. 3
Fig. 3

Comparison of FWHM of fluorescence (blue) and ASE (red) spectra from Sample B.

Fig. 4
Fig. 4

Dependency of emission intensity on pump intensity at the peak emission wavelength for a fixed length of the pump stripe for samples A, B, C and D, inset: ASE intensity distribution at the output facet of sample B captured by CCD camera.

Fig. 5
Fig. 5

Emission intensity as a function of pump length. Red markers represent the measured output intensities. The pump intensity (Ip) was varied from 5.8 to 43.4 mJ/cm2. The gain coefficient (γ) is obtained in cm−1 by fitting the measured emission intensity to Eq. (1). Measurements are repeated for samples of different IR-140 concentration (a) Sample A, (b) Sample B, (c) Sample C, (d) Sample D.

Fig. 6
Fig. 6

ASE gain of the TE and TM modes. The pump polarisation is either parallel (||) or perpendicular (⊥) to the pump stripe. (a) Ip = 22 mJ/cm2, (b) Ip = 43.4 mJ/cm2

Tables (1)

Tables Icon

Table 1 Gain Coefficient (γ) and Spontaneous Emission Constant (JSP) Versus Ip for Samples A, B, C and D

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ASE (l)= J SP γ [ exp(γl)1 ]
I= I x + I y + I z
r= I || I I || +2 I

Metrics