Abstract

Spoof surface modes on nanostructured metallic surfaces are known to have tailorable dispersion dependent on the geometric characteristics of the periodic pattern. Here we examine the spoof plasmon dispersion on an isolated grating and a grating-planar mirror cavity configuration. The spoof polariton dispersion in the cavity is obtained using the scattering matrix approach, and the related differential modal density of states is introduced to obtain the mode dispersion and classify the cavity polariton modes. The grating-mirror cavity geometry is an example of periodically nanostructured metals above a planar ground plane. The properties discussed here are relevant for applications ranging from thin electromagnetic perfect absorbers to near-field radiative heat transfer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Castanié, D. Felbacq, “Confined plasmonic modes in a nanocavity,” Opt. Commun. 285, 3353–3357 (2012).
    [CrossRef]
  2. Y. Kurokawa, H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
    [CrossRef]
  3. B. Sturman, E. Podivilov, M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
    [CrossRef]
  4. J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106, 103715 (2009).
    [CrossRef]
  5. M. A. Kats, D. Woolf, R. Blanchard, N. Yu, F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19, 14860–14870 (2011).
    [CrossRef] [PubMed]
  6. X. Shen, T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Reviews 8, 146–151 (2013).
  7. G. Sun, J. B. Khurgin, D. P. Tsai, “Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study,” Opt. Express 21, 28054–28061 (2013).
    [CrossRef]
  8. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science (New York, N.Y.) 305, 847–848 (2004).
    [CrossRef]
  9. F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. of Optics A: Pure and Applied Optics 7, S97–S101 (2005).
    [CrossRef]
  10. N. Yu et al., “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
    [CrossRef] [PubMed]
  11. A. Rusina, M. Durach, M. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
    [CrossRef]
  12. D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
    [CrossRef]
  13. D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
    [CrossRef]
  14. A. Lambrecht, V. Marachevsky, “Casimir interaction of dielectric gratings,” Phys. Rev. Lett. 101, 160403 (2008).
    [CrossRef] [PubMed]
  15. G. Bimonte, “Scattering approach to casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium,” Phys. Rev. A 80, 042102 (2009).
    [CrossRef]
  16. P. S. Davids, F. Intravaia, F. D. S. S. Rosa, D. Dalvit, “Modal approach to Casimir forces in periodic structures,” Phys. Rev. A 82, 062111 (2010).
    [CrossRef]
  17. R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
    [CrossRef]
  18. J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
    [CrossRef]
  19. M. T. H. Reid, J. White, S. G. Johnson, “Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries,” Phys. Rev. A 88, 022514 (2013).
    [CrossRef]
  20. A. W. Rodriguez, F. Capasso, S. G. Johnson, “The Casimir effect in microstructured geometries,” Nature Photonics 5, 211–221 (2011).
    [CrossRef]
  21. F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
    [CrossRef]
  22. D. Polder, M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies”, Phys. Rev. B 4, 3303–3314 (1971).
    [CrossRef]
  23. R. Carminati, J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
    [CrossRef]
  24. A. Narayanaswamy, S. Shen, G. Chen, “Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).
    [CrossRef]
  25. A. Narayanaswamy, S. Shen, L. Hu, X. Chen, G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).
    [CrossRef]
  26. R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
    [CrossRef] [PubMed]
  27. S.-A. Biehs, F. S. S. Rosa, P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98, 243102 (2011).
    [CrossRef]
  28. T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Progress In Electromagnetics Research 8, 91–96 (2009).
    [CrossRef]
  29. F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
    [CrossRef]
  30. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  31. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  32. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  33. Z.-Y. Li, K.-M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
    [CrossRef]
  34. Z.-Y. Li, L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
    [CrossRef]
  35. A. Wirzba, “The Casimir effect as a scattering problem,” J. of Physics A: Mathematical and Theoretical 41, 164003 (2008).
    [CrossRef]
  36. F. Intravaia, C. Henkel, A. Lambrecht, “Role of surface plasmons in the Casimir effect,” Phys. Rev. A 76, 033820 (2007).
    [CrossRef]
  37. H. Haakh, F. Intravaia, C. Henkel, “Temperature dependence of the plasmonic Casimir interaction”, Phys. Rev. A 82, 012507 (2010).
    [CrossRef]

2013

M. T. H. Reid, J. White, S. G. Johnson, “Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries,” Phys. Rev. A 88, 022514 (2013).
[CrossRef]

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

X. Shen, T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Reviews 8, 146–151 (2013).

G. Sun, J. B. Khurgin, D. P. Tsai, “Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study,” Opt. Express 21, 28054–28061 (2013).
[CrossRef]

2012

F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
[CrossRef]

A. Castanié, D. Felbacq, “Confined plasmonic modes in a nanocavity,” Opt. Commun. 285, 3353–3357 (2012).
[CrossRef]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
[CrossRef]

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

2011

A. W. Rodriguez, F. Capasso, S. G. Johnson, “The Casimir effect in microstructured geometries,” Nature Photonics 5, 211–221 (2011).
[CrossRef]

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

S.-A. Biehs, F. S. S. Rosa, P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98, 243102 (2011).
[CrossRef]

M. A. Kats, D. Woolf, R. Blanchard, N. Yu, F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19, 14860–14870 (2011).
[CrossRef] [PubMed]

2010

H. Haakh, F. Intravaia, C. Henkel, “Temperature dependence of the plasmonic Casimir interaction”, Phys. Rev. A 82, 012507 (2010).
[CrossRef]

P. S. Davids, F. Intravaia, F. D. S. S. Rosa, D. Dalvit, “Modal approach to Casimir forces in periodic structures,” Phys. Rev. A 82, 062111 (2010).
[CrossRef]

N. Yu et al., “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[CrossRef] [PubMed]

A. Rusina, M. Durach, M. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[CrossRef]

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[CrossRef]

2009

G. Bimonte, “Scattering approach to casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium,” Phys. Rev. A 80, 042102 (2009).
[CrossRef]

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Progress In Electromagnetics Research 8, 91–96 (2009).
[CrossRef]

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).
[CrossRef]

J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106, 103715 (2009).
[CrossRef]

2008

A. Wirzba, “The Casimir effect as a scattering problem,” J. of Physics A: Mathematical and Theoretical 41, 164003 (2008).
[CrossRef]

A. Lambrecht, V. Marachevsky, “Casimir interaction of dielectric gratings,” Phys. Rev. Lett. 101, 160403 (2008).
[CrossRef] [PubMed]

A. Narayanaswamy, S. Shen, G. Chen, “Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).
[CrossRef]

2007

F. Intravaia, C. Henkel, A. Lambrecht, “Role of surface plasmons in the Casimir effect,” Phys. Rev. A 76, 033820 (2007).
[CrossRef]

Y. Kurokawa, H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[CrossRef]

B. Sturman, E. Podivilov, M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[CrossRef]

2005

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. of Optics A: Pure and Applied Optics 7, S97–S101 (2005).
[CrossRef]

2004

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science (New York, N.Y.) 305, 847–848 (2004).
[CrossRef]

2003

Z.-Y. Li, K.-M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
[CrossRef]

Z.-Y. Li, L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

1999

R. Carminati, J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

1997

1996

1971

D. Polder, M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies”, Phys. Rev. B 4, 3303–3314 (1971).
[CrossRef]

Aksyuk, V.

F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
[CrossRef]

Aksyuk, V. a.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

Alemi, A.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Bai, W.

J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106, 103715 (2009).
[CrossRef]

Ben-Abdallah, P.

S.-A. Biehs, F. S. S. Rosa, P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98, 243102 (2011).
[CrossRef]

Biehs, S.-A.

S.-A. Biehs, F. S. S. Rosa, P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98, 243102 (2011).
[CrossRef]

Bimonte, G.

G. Bimonte, “Scattering approach to casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium,” Phys. Rev. A 80, 042102 (2009).
[CrossRef]

Blanchard, R.

Cai, L.

J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106, 103715 (2009).
[CrossRef]

Capasso, F.

M. A. Kats, D. Woolf, R. Blanchard, N. Yu, F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19, 14860–14870 (2011).
[CrossRef] [PubMed]

A. W. Rodriguez, F. Capasso, S. G. Johnson, “The Casimir effect in microstructured geometries,” Nature Photonics 5, 211–221 (2011).
[CrossRef]

Carminati, R.

R. Carminati, J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

Castanié, A.

A. Castanié, D. Felbacq, “Confined plasmonic modes in a nanocavity,” Opt. Commun. 285, 3353–3357 (2012).
[CrossRef]

Chen, G.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).
[CrossRef]

A. Narayanaswamy, S. Shen, G. Chen, “Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).
[CrossRef]

Chen, X.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).
[CrossRef]

Cruz-Cabrera, A. A.

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[CrossRef]

Cui, T. J.

X. Shen, T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Reviews 8, 146–151 (2013).

Dalvit, D.

F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
[CrossRef]

P. S. Davids, F. Intravaia, F. D. S. S. Rosa, D. Dalvit, “Modal approach to Casimir forces in periodic structures,” Phys. Rev. A 82, 062111 (2010).
[CrossRef]

Dalvit, D. A. R.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

Davids, P.

F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
[CrossRef]

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[CrossRef]

Davids, P. S.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

P. S. Davids, F. Intravaia, F. D. S. S. Rosa, D. Dalvit, “Modal approach to Casimir forces in periodic structures,” Phys. Rev. A 82, 062111 (2010).
[CrossRef]

Decca, R.

F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
[CrossRef]

Decca, R. S.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

Durach, M.

A. Rusina, M. Durach, M. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[CrossRef]

Felbacq, D.

A. Castanié, D. Felbacq, “Confined plasmonic modes in a nanocavity,” Opt. Commun. 285, 3353–3357 (2012).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. of Optics A: Pure and Applied Optics 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science (New York, N.Y.) 305, 847–848 (2004).
[CrossRef]

Gorkunov, M.

B. Sturman, E. Podivilov, M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[CrossRef]

Greffet, J.-J.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
[CrossRef]

R. Carminati, J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

Guérout, R.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
[CrossRef]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

Haakh, H.

H. Haakh, F. Intravaia, C. Henkel, “Temperature dependence of the plasmonic Casimir interaction”, Phys. Rev. A 82, 012507 (2010).
[CrossRef]

Henkel, C.

H. Haakh, F. Intravaia, C. Henkel, “Temperature dependence of the plasmonic Casimir interaction”, Phys. Rev. A 82, 012507 (2010).
[CrossRef]

F. Intravaia, C. Henkel, A. Lambrecht, “Role of surface plasmons in the Casimir effect,” Phys. Rev. A 76, 033820 (2007).
[CrossRef]

Ho, K.-M.

Z.-Y. Li, K.-M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
[CrossRef]

Hu, L.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).
[CrossRef]

Hugonin, J.-P.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

Intravaia, F.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
[CrossRef]

P. S. Davids, F. Intravaia, F. D. S. S. Rosa, D. Dalvit, “Modal approach to Casimir forces in periodic structures,” Phys. Rev. A 82, 062111 (2010).
[CrossRef]

H. Haakh, F. Intravaia, C. Henkel, “Temperature dependence of the plasmonic Casimir interaction”, Phys. Rev. A 82, 012507 (2010).
[CrossRef]

F. Intravaia, C. Henkel, A. Lambrecht, “Role of surface plasmons in the Casimir effect,” Phys. Rev. A 76, 033820 (2007).
[CrossRef]

Jiang, T.

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Progress In Electromagnetics Research 8, 91–96 (2009).
[CrossRef]

Johnson, S. G.

M. T. H. Reid, J. White, S. G. Johnson, “Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries,” Phys. Rev. A 88, 022514 (2013).
[CrossRef]

A. W. Rodriguez, F. Capasso, S. G. Johnson, “The Casimir effect in microstructured geometries,” Nature Photonics 5, 211–221 (2011).
[CrossRef]

Jung, I. W.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

Kats, M. A.

Kemme, S. A.

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[CrossRef]

Khurgin, J. B.

Kim, J. K.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

Klem, J. F.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

Koev, S.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

Kurokawa, Y.

Y. Kurokawa, H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[CrossRef]

Lambrecht, A.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
[CrossRef]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

A. Lambrecht, V. Marachevsky, “Casimir interaction of dielectric gratings,” Phys. Rev. Lett. 101, 160403 (2008).
[CrossRef] [PubMed]

F. Intravaia, C. Henkel, A. Lambrecht, “Role of surface plasmons in the Casimir effect,” Phys. Rev. A 76, 033820 (2007).
[CrossRef]

Leonhardt, D.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

Li, L.

Li, Z.-Y.

Z.-Y. Li, K.-M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
[CrossRef]

Z.-Y. Li, L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, L.-L.

Z.-Y. Li, L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

López, D.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
[CrossRef]

Lundock, R.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Lussange, J.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
[CrossRef]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

Marachevsky, V.

A. Lambrecht, V. Marachevsky, “Casimir interaction of dielectric gratings,” Phys. Rev. Lett. 101, 160403 (2008).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. of Optics A: Pure and Applied Optics 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science (New York, N.Y.) 305, 847–848 (2004).
[CrossRef]

Miyazaki, H.

Y. Kurokawa, H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[CrossRef]

Mueller, G.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).
[CrossRef]

A. Narayanaswamy, S. Shen, G. Chen, “Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).
[CrossRef]

Ottens, R.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. of Optics A: Pure and Applied Optics 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science (New York, N.Y.) 305, 847–848 (2004).
[CrossRef]

Peters, D. W.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[CrossRef]

Podivilov, E.

B. Sturman, E. Podivilov, M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[CrossRef]

Polder, D.

D. Polder, M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies”, Phys. Rev. B 4, 3303–3314 (1971).
[CrossRef]

Quetschke, V.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Ran, L.

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Progress In Electromagnetics Research 8, 91–96 (2009).
[CrossRef]

Reid, M. T. H.

M. T. H. Reid, J. White, S. G. Johnson, “Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries,” Phys. Rev. A 88, 022514 (2013).
[CrossRef]

Reinke, C. M.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

Reitze, D.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Reynaud, S.

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
[CrossRef]

Rodriguez, A. W.

A. W. Rodriguez, F. Capasso, S. G. Johnson, “The Casimir effect in microstructured geometries,” Nature Photonics 5, 211–221 (2011).
[CrossRef]

Rosa, F. D. S. S.

P. S. Davids, F. Intravaia, F. D. S. S. Rosa, D. Dalvit, “Modal approach to Casimir forces in periodic structures,” Phys. Rev. A 82, 062111 (2010).
[CrossRef]

Rosa, F. S. S.

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
[CrossRef]

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

S.-A. Biehs, F. S. S. Rosa, P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98, 243102 (2011).
[CrossRef]

Rusina, A.

A. Rusina, M. Durach, M. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[CrossRef]

Samora, S.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[CrossRef]

Shen, L.

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Progress In Electromagnetics Research 8, 91–96 (2009).
[CrossRef]

Shen, S.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).
[CrossRef]

A. Narayanaswamy, S. Shen, G. Chen, “Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).
[CrossRef]

Shen, X.

X. Shen, T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Reviews 8, 146–151 (2013).

Song, G.

J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106, 103715 (2009).
[CrossRef]

Stockman, M.

A. Rusina, M. Durach, M. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[CrossRef]

Sturman, B.

B. Sturman, E. Podivilov, M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[CrossRef]

Sun, G.

Talin, A. A.

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

Tanner, D.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Tsai, D. P.

Van Hove, M.

D. Polder, M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies”, Phys. Rev. B 4, 3303–3314 (1971).
[CrossRef]

Wendt, J. R.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[CrossRef]

White, J.

M. T. H. Reid, J. White, S. G. Johnson, “Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries,” Phys. Rev. A 88, 022514 (2013).
[CrossRef]

Whiting, B.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Wirzba, A.

A. Wirzba, “The Casimir effect as a scattering problem,” J. of Physics A: Mathematical and Theoretical 41, 164003 (2008).
[CrossRef]

Wise, S.

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

Woolf, D.

Xu, Y.

J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106, 103715 (2009).
[CrossRef]

Yu, N.

Zhang, J.

J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106, 103715 (2009).
[CrossRef]

Zhang, X.

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Progress In Electromagnetics Research 8, 91–96 (2009).
[CrossRef]

Appl. Phys. A

A. Rusina, M. Durach, M. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[CrossRef]

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).
[CrossRef]

Appl. Phys. Lett.

S.-A. Biehs, F. S. S. Rosa, P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98, 243102 (2011).
[CrossRef]

J. Appl. Phys.

J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106, 103715 (2009).
[CrossRef]

J. of Optics A: Pure and Applied Optics

F. J. Garcia-Vidal, L. Martín-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. of Optics A: Pure and Applied Optics 7, S97–S101 (2005).
[CrossRef]

J. of Physics A: Mathematical and Theoretical

A. Wirzba, “The Casimir effect as a scattering problem,” J. of Physics A: Mathematical and Theoretical 41, 164003 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Laser Photonics Reviews

X. Shen, T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Reviews 8, 146–151 (2013).

Nat. Mater.

N. Yu et al., “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[CrossRef] [PubMed]

Nature Communications

F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. a. Aksyuk, D. A. R. Dalvit, D. López, “Strong Casimir force reduction through metallic surface nanostructuring,” Nature Communications 4, 3515 (2013).
[CrossRef]

Nature Photonics

A. W. Rodriguez, F. Capasso, S. G. Johnson, “The Casimir effect in microstructured geometries,” Nature Photonics 5, 211–221 (2011).
[CrossRef]

Opt. Commun.

A. Castanié, D. Felbacq, “Confined plasmonic modes in a nanocavity,” Opt. Commun. 285, 3353–3357 (2012).
[CrossRef]

Opt. Express

Phys. Rev. A

F. Intravaia, C. Henkel, A. Lambrecht, “Role of surface plasmons in the Casimir effect,” Phys. Rev. A 76, 033820 (2007).
[CrossRef]

H. Haakh, F. Intravaia, C. Henkel, “Temperature dependence of the plasmonic Casimir interaction”, Phys. Rev. A 82, 012507 (2010).
[CrossRef]

F. Intravaia, P. Davids, R. Decca, V. Aksyuk, D. López, D. Dalvit, “Quasianalytical modal approach for computing casimir interactions in periodic nanostructures,” Phys. Rev. A 86, 042101 (2012).
[CrossRef]

M. T. H. Reid, J. White, S. G. Johnson, “Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries,” Phys. Rev. A 88, 022514 (2013).
[CrossRef]

G. Bimonte, “Scattering approach to casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium,” Phys. Rev. A 80, 042102 (2009).
[CrossRef]

P. S. Davids, F. Intravaia, F. D. S. S. Rosa, D. Dalvit, “Modal approach to Casimir forces in periodic structures,” Phys. Rev. A 82, 062111 (2010).
[CrossRef]

Phys. Rev. B

R. Guérout, J. Lussange, F. S. S. Rosa, J.-P. Hugonin, D. A. R. Dalvit, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B 85, 180301 (2012).
[CrossRef]

J. Lussange, R. Guérout, F. S. S. Rosa, J.-J. Greffet, A. Lambrecht, S. Reynaud, “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B 86, 085432 (2012).
[CrossRef]

D. Polder, M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies”, Phys. Rev. B 4, 3303–3314 (1971).
[CrossRef]

A. Narayanaswamy, S. Shen, G. Chen, “Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).
[CrossRef]

Z.-Y. Li, K.-M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B 67, 165104 (2003).
[CrossRef]

Y. Kurokawa, H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[CrossRef]

B. Sturman, E. Podivilov, M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[CrossRef]

Phys. Rev. E

Z.-Y. Li, L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Phys. Rev. Lett.

R. Carminati, J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999).
[CrossRef]

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, B. Whiting, “Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[CrossRef] [PubMed]

A. Lambrecht, V. Marachevsky, “Casimir interaction of dielectric gratings,” Phys. Rev. Lett. 101, 160403 (2008).
[CrossRef] [PubMed]

Proc. SPIE

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[CrossRef]

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE 8353, 83533B (2012).
[CrossRef]

Progress In Electromagnetics Research

T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Progress In Electromagnetics Research 8, 91–96 (2009).
[CrossRef]

Science (New York, N.Y.)

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science (New York, N.Y.) 305, 847–848 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Grating-mirror cavity. The lower mirror is a periodically structured metallic grating. The upper mirror is a metallic plane at z = −a and the lower mirror top surface is at z = 0.

Fig. 2
Fig. 2

Spoof plasmon dispersion as a function of the grating period for fixed duty cycle and groove depth. The duty cycle is 64% and the grating depth is h = 216 nm for all cases. (a) Lx = 250 nm and w = 160 nm; (b) Lx = 500 nm and w = 320 nm; (c) Lx = 750 nm and w = 480 nm. The horizontal line indicates the effective plasma wave-vector kpl = π/2h. The units of the k and kx are both μm−1.

Fig. 3
Fig. 3

Spoof plasmon dispersion relation as a function of the groove depth h. The grating period and width are fixed at 250 nm and 160 nm, respectively. The groove depth is h = 200 nm (blue solid line), h = 300 nm (purple dashed lines), h = 400 nm (red dashed lines), and h = 500 nm (gold dashed lines). As we increase the value of h we observe the appearance of high order modes above the fundamental, indicating the relevance of the structure’s depth for the dispersion relation.

Fig. 4
Fig. 4

Zeroth order TM polarized reflection at normal incidence from a grating with finite conductivity given by the Drude model parameters for Au. The geometrical parameters of the grating are h = 400 nm, Lx = 250 nm, and w = 160 nm. The bright features below the light-line (k < kx) represent poles of the reflection matrix.

Fig. 5
Fig. 5

Modes in a perfectly conducting grating-plane cavity (full blue lines) compared with the spoof-plasmons for the isolated grating (red dashed lines). The grating parameters are Lx = 250 nm, h = 400 and w = 160 nm and the cavity length is a = 50 nm (left) and a = 400 nm (right). The thin black line is the lightline separating the propagating (above the line) from the evanenscent sector (below the line). The dotted black line in the right plot indicates the modes for a plane-plane cavity of the same separation. The units of k and kx are both μm−1.

Fig. 6
Fig. 6

Differential modal density of states of a nanostructured grating-plane cavity (left panels) compared to plots of a plane-plane cavity, for various separations (a) a = 50 nm; (b) a = 400 nm; (c) a = 750 nm. In all these plots ky is fixed to zero. The zero density contours Δn = 0 are highlighted in blue. The parameters of the grating are Lx = 250 nm, w = 160 nm, and h = 216 nm (these parameters correspond to the metallic grating studied in recent Casimir force measurements [21]). Both the grating and the plane are described using the Drude model for gold. The units of k and kx are both μm−1, while the density of states is in units of πc/sec.

Fig. 7
Fig. 7

Differential modal density of states plots for nanostructure grating-plane cavity for different separations: (a) a = 50 nm and (b) a = 250 nm. The period and the width are the same as in fig. (6), but the depth is different, h = 400 nm. The units of k and kx are both μm−1, while the density of states is in units of πc/sec.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

H y ( 1 ) = n H n exp ( i k x ( n ) x i q z ( n ) z ) , E x ( 1 ) = n q z ( n ) k H n exp ( i k x ( n ) x i q z ( n ) z ) .
H y ( 2 ) = i B cos ( k ( z h ) ) , E x ( 2 ) = B sin ( k ( z h ) ) ,
n H n s n = i B cos ( k h ) , s n = sin ( k x ( n ) w / 2 ) k x ( n ) w / 2 .
H n = B k q z ( n ) w L x sin ( k h ) s n .
k w L x n s n 2 k x ( n ) 2 k 2 = cot ( k h ) ,
w L x s 0 2 tan ( k h ) = k x 2 k 2 k ,
ε ( ω ) = 1 ω p l 2 ω ( ω + i γ ) ,
H y ( 1 ) = n H n exp ( i k x ( n ) x ) cos ( q z ( n ) ( z + a ) ) , E x ( 1 ) = i n q z ( n ) k H n exp ( i k x ( n ) x ) sin ( q z ( n ) ( z + a ) ) .
k w L x n s n 2 q z ( n ) cot ( q z ( n ) a ) = cot ( k h ) ,
Ψ 0 = μ C μ X μ , 0 ( ) e i q z ( 0 ) z
Ψ 1 = μ A μ X μ , 1 ( + ) e i q z ( 1 ) z + B μ X μ , 1 ( ) e i q z ( 1 ) z
Ψ 2 = μ D μ X μ , 2 ( + ) e i q z ( 2 ) z ,
Ψ 1 = μ A ν ( δ μ , ν X μ , 1 ( + ) e i q z ( 1 ) z + ν R μ , ν X μ , 1 ( ) e q z ( 1 ) z ) ,
C μ e i q z 0 a = i α μ A μ e i q z 1 a + β μ B μ e i q z 1 a ,
α μ = { 1 2 q z ( 0 ) q z ( 1 ) ( q z ( 1 ) q z ( 0 ) ) σ = s 1 2 q z ( 0 ) q z ( 1 ) ( ε 0 ε 1 q z ( 1 ) ε 1 ε 0 q z ( 0 ) ) σ = p ,
β μ = { 1 2 q z ( 0 ) q z ( 1 ) ( q z ( 1 ) + q z ( 0 ) ) σ = s 1 2 q z ( 0 ) q z ( 1 ) ( ε 0 ε 1 q z ( 1 ) + ε 1 ε 0 q z ( 0 ) ) σ = p .
C μ = i α μ A μ e i ( q z 1 + q z 0 ) a .
ν ( i δ μ , ν ( 1 α μ + α μ ) e i q z 1 a e i q z 1 a β μ R μ , ν ) A ν = 0
ν ( δ μ , ν e 2 i q z , μ ( 1 ) a ρ μ R μ , ν ) A ν = 0 .
ρ μ = { i r s = i ( q z ( 1 ) q z ( 0 ) q z ( 1 ) + q z ( 0 ) ) σ = s i r p = i ( ε 0 q z ( 1 ) ε 1 q z ( 0 ) ε 0 q z ( 1 ) + ε 1 q z ( 0 ) ) σ = p ,
det ( I e i q z a ρ e i q z a R ) = 0 .
Δ n ( ω , k x , k y , a ) = 1 π Im ω logdet ( I e i q z a ρ e i q z a R ) ,

Metrics