Abstract

A substantial advantage of stimulated emission depletion (STED) microscopy over other super-resolution methods is that images can be acquired in real-time without any post-processing. However imaging speed and photodamage are two major concerns for STED imaging of whole cells. Here we propose a new microscopy method we have termed Bessel-Beam STED (or BB-STED) that overcomes both of these limitations of conventional STED microscopy. In the proposed method, rather than exciting a single STED spot in the sample, an entire line of the sample is illuminated. This line-scanning technique dramatically increases the speed of STED. In addition, plane-illumination by scanning of the line across the focal plane of a detection objective limits the light to a thin layer of the sample and thus significantly reduces photobleaching and photodamage above and below the focal plane compared to epi-illumination. Using the organic dye Atto647N as an example, we calculated the STED power required to break the diffraction limit. The results presented here will be used to guide future experimental designs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anatomie 9, 413–418 (1873).
  2. D. W. Pohl and D. Courjon, Near Field Optics (Kluwer, 1993).
  3. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  4. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  7. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [CrossRef] [PubMed]
  8. C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
    [CrossRef] [PubMed]
  9. S. Quirin, S. R. P. Pavani, R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
    [CrossRef] [PubMed]
  10. B. Huang, H. Babcock, X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
    [CrossRef] [PubMed]
  11. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [CrossRef] [PubMed]
  12. T. A. Klar, S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
    [CrossRef] [PubMed]
  13. S. W. Hell, M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
    [CrossRef]
  14. M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
    [CrossRef] [PubMed]
  15. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
    [CrossRef] [PubMed]
  16. B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
    [CrossRef] [PubMed]
  17. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
    [CrossRef] [PubMed]
  18. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [CrossRef] [PubMed]
  19. M. Dyba, S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
    [CrossRef] [PubMed]
  20. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
    [CrossRef] [PubMed]
  21. J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
    [CrossRef] [PubMed]
  22. J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
    [CrossRef] [PubMed]
  23. F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
    [CrossRef] [PubMed]
  24. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [CrossRef] [PubMed]
  25. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
    [CrossRef] [PubMed]
  26. F. O. Fahrbach, A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
    [CrossRef] [PubMed]
  27. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21(11), 13824–13839 (2013).
    [CrossRef] [PubMed]
  28. P. Zhang, P. M. Goodwin, J. H. Werner, “Fast, 3D imaging via confocal line scanning of a Bessel beam using a single galvo mirror,” Proc. SPIE 8947, 1K–8K (2014).
  29. M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms, “STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100(8), L43–L45 (2011).
    [CrossRef] [PubMed]
  30. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  31. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  32. M. Leutenegger, C. Eggeling, S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010).
    [CrossRef] [PubMed]
  33. E. Rittweger, B. Rankin, V. Westphal, S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4–6), 483–487 (2007).
    [CrossRef]
  34. V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
    [CrossRef] [PubMed]
  35. P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
    [CrossRef] [PubMed]
  36. G. Moneron, S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
    [CrossRef] [PubMed]
  37. L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
    [CrossRef] [PubMed]
  38. P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
    [CrossRef] [PubMed]

2014 (1)

P. Zhang, P. M. Goodwin, J. H. Werner, “Fast, 3D imaging via confocal line scanning of a Bessel beam using a single galvo mirror,” Proc. SPIE 8947, 1K–8K (2014).

2013 (2)

F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21(11), 13824–13839 (2013).
[CrossRef] [PubMed]

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

2012 (4)

S. Quirin, S. R. P. Pavani, R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[CrossRef] [PubMed]

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

F. O. Fahrbach, A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
[CrossRef] [PubMed]

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[CrossRef] [PubMed]

2011 (3)

M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms, “STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100(8), L43–L45 (2011).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

2010 (4)

B. Huang, H. Babcock, X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[CrossRef] [PubMed]

C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[CrossRef] [PubMed]

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

M. Leutenegger, C. Eggeling, S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010).
[CrossRef] [PubMed]

2009 (3)

G. Moneron, S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

2008 (4)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[CrossRef] [PubMed]

2007 (1)

E. Rittweger, B. Rankin, V. Westphal, S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4–6), 483–487 (2007).
[CrossRef]

2006 (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

2002 (1)

M. Dyba, S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[CrossRef] [PubMed]

2000 (2)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[CrossRef] [PubMed]

1999 (1)

1995 (1)

S. W. Hell, M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[CrossRef]

1994 (1)

1987 (1)

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anatomie 9, 413–418 (1873).

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anatomie 9, 413–418 (1873).

Agard, D. A.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Alessandri, K.

Babcock, H.

B. Huang, H. Babcock, X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[CrossRef] [PubMed]

Basu, S.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

Bates, M.

B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[CrossRef] [PubMed]

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[CrossRef] [PubMed]

Betzig, E.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bianchini, P.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[CrossRef] [PubMed]

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Cande, W. Z.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Carlton, P. M.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Cella Zanacchi, F.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Chapman, A. R.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Davidson, M. W.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Del Bue, A.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Diaspro, A.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[CrossRef] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Dong, C. Y.

P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[CrossRef] [PubMed]

Durnin, J.

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Dyba, M.

M. Dyba, S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eggeling, C.

M. Leutenegger, C. Eggeling, S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

Egner, A.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[CrossRef] [PubMed]

Engelhardt, J.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[CrossRef] [PubMed]

Ermolayev, V.

M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms, “STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100(8), L43–L45 (2011).
[CrossRef] [PubMed]

Fahrbach, F. O.

Faretta, M.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Friedrich, M.

M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms, “STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100(8), L43–L45 (2011).
[CrossRef] [PubMed]

Furia, L.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

Galiani, S.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[CrossRef] [PubMed]

Gan, Q.

M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms, “STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100(8), L43–L45 (2011).
[CrossRef] [PubMed]

Gao, L.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

Gebhardt, J. C. M.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Goldstein, B.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

Golubovskaya, I. N.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Goodwin, P. M.

P. Zhang, P. M. Goodwin, J. H. Werner, “Fast, 3D imaging via confocal line scanning of a Bessel beam using a single galvo mirror,” Proc. SPIE 8947, 1K–8K (2014).

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Gurchenkov, V.

Gustafsson, M. G.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Harke, B.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[CrossRef] [PubMed]

Harms, G. S.

M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms, “STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100(8), L43–L45 (2011).
[CrossRef] [PubMed]

Hell, S.

E. Rittweger, B. Rankin, V. Westphal, S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4–6), 483–487 (2007).
[CrossRef]

Hell, S. W.

M. Leutenegger, C. Eggeling, S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010).
[CrossRef] [PubMed]

G. Moneron, S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[CrossRef] [PubMed]

V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

M. Dyba, S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[CrossRef] [PubMed]

T. A. Klar, S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
[CrossRef] [PubMed]

S. W. Hell, M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[CrossRef]

S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Higgins, C. D.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

Huang, B.

B. Huang, H. Babcock, X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Jahn, R.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Jakobs, S.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

Joseph, N.

C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[CrossRef] [PubMed]

Kamin, D.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Klar, T. A.

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Kroug, M.

S. W. Hell, M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[CrossRef]

Kubitscheck, U.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

Lauterbach, M. A.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Lavagnino, Z.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Leutenegger, M.

Lidke, K. A.

C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

Maniatis, T.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Masters, B. R.

P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[CrossRef] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

Moerner, W. E.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

Moneron, G.

Nassoy, P.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Pavani, S. R. P.

S. Quirin, S. R. P. Pavani, R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[CrossRef] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

Peifer, M.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

Perrone Donnorso, M.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

Piestun, R.

S. Quirin, S. R. P. Pavani, R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[CrossRef] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

Poulton, J. S.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

Quirin, S.

S. Quirin, S. R. P. Pavani, R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[CrossRef] [PubMed]

Rankin, B.

E. Rittweger, B. Rankin, V. Westphal, S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4–6), 483–487 (2007).
[CrossRef]

Rieger, B.

C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[CrossRef] [PubMed]

Ritter, J. G.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

Rittweger, E.

E. Rittweger, B. Rankin, V. Westphal, S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4–6), 483–487 (2007).
[CrossRef]

Rizzoli, S. O.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Rohrbach, A.

Roy, R.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[CrossRef] [PubMed]

Schmidt, R.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[CrossRef] [PubMed]

Sedat, J. W.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Shao, L.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Siebrasse, J. P.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

Smith, C. S.

C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[CrossRef] [PubMed]

So, P. T. C.

P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[CrossRef] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Stelzer, E. H. K.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Suter, D. M.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

Veenendaal, A.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

Veith, R.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

Vicidomini, G.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[CrossRef] [PubMed]

Wang, C. J.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Wang, W.

B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Werner, J. H.

P. Zhang, P. M. Goodwin, J. H. Werner, “Fast, 3D imaging via confocal line scanning of a Bessel beam using a single galvo mirror,” Proc. SPIE 8947, 1K–8K (2014).

Westphal, V.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

E. Rittweger, B. Rankin, V. Westphal, S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4–6), 483–487 (2007).
[CrossRef]

V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

Wichmann, J.

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Wu, X.

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

Wurm, C. A.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[CrossRef] [PubMed]

Xie, X. S.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

Zhang, P.

P. Zhang, P. M. Goodwin, J. H. Werner, “Fast, 3D imaging via confocal line scanning of a Bessel beam using a single galvo mirror,” Proc. SPIE 8947, 1K–8K (2014).

Zhao, Z. W.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

Zhuang, X.

B. Huang, H. Babcock, X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[CrossRef] [PubMed]

Appl. Phys. B (1)

S. W. Hell, M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[CrossRef]

Arch. Mikrosk. Anatomie (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anatomie 9, 413–418 (1873).

Biophys. J. (3)

M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms, “STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100(8), L43–L45 (2011).
[CrossRef] [PubMed]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Cell (2)

B. Huang, H. Babcock, X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[CrossRef] [PubMed]

L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

E. Rittweger, B. Rankin, V. Westphal, S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4–6), 483–487 (2007).
[CrossRef]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

Nat. Commun. (1)

F. O. Fahrbach, A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
[CrossRef] [PubMed]

Nat. Methods (7)

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[CrossRef] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[CrossRef] [PubMed]

C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[CrossRef] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

M. Dyba, S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[CrossRef] [PubMed]

PLoS ONE (1)

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

S. Quirin, S. R. P. Pavani, R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012).
[CrossRef] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[CrossRef] [PubMed]

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. Zhang, P. M. Goodwin, J. H. Werner, “Fast, 3D imaging via confocal line scanning of a Bessel beam using a single galvo mirror,” Proc. SPIE 8947, 1K–8K (2014).

Science (4)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

D. W. Pohl and D. Courjon, Near Field Optics (Kluwer, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a Bessel beam STED microscope. The inset (a) and (b) show the side and front views of the excitation (green) and STED beams (red), respectively, inside the detection volume denoted by the dashed box. The coordinate systems with and without prime define the detection and excitation geometries respectively. A galvo-mirror is needed for scanning both of the lasers to form an excitation plane and is omitted here for simplicity.

Fig. 2
Fig. 2

Creation of a zero-order Bessel beam for excitation. (a) The annular mask with a ring transmission for creating a zero-order Bessel beam; (b) Calculated intensity distribution in the r-z plane. (c) Calculated intensity distribution in the x-y plane with z = 0. (d) Lateral intensity profile of the Bessel beam. (e) Axial intensity profile of the Bessel beam. Calculations are made for an annular mask with N A B e s s e l M a x = 0.53 and N A B e s s e l M i n = 0.50 .

Fig. 3
Fig. 3

Creation of Bessel beams for spontaneous emission depletion. (a) The annular mask with a ring transmission and an azimuthal phase delay ramped from 0 to 2π for creating a first-order Bessel beam; (b) Calculated intensity distribution in the r-z plane for the first-order Bessel beam. (c) Calculated intensity distribution in x-y plane with z = 0 for the first-order Bessel beam. (d) Lateral intensity profiles of the first-order (black) and second-order (red) Bessel beams. (e) Z-dependence of the peak intensity profiles of the first-order (black) and second-order (red) Bessel beams. Calculations are made for annular masks with N A B e s s e l M a x = 0.53 and N A B e s s e l M i n = 0.50 for both Bessel beams. Intensities are scaled to the maximum of the first-order Bessel beam.

Fig. 4
Fig. 4

Spontaneous emission depletion by a first-order Bessel beam. (a) Probability of spontaneous decay on the focal plane (z = 0) when an average STED power of 1 W is applied. (b) Effective excitation profile in the r-z plane when an average STED power of 1 W is applied. (c) Effective lateral excitation profile at different STED laser powers. (d) Dependence of the effective diameter of the excitation laser on the STED laser power. The solid curve is an inverse-square root fit. Calculations use the organic dye Atto 647N and a STED laser operating at 750 nm with a pulse length of 250 ps.

Fig. 5
Fig. 5

Spontaneous emission depletion using a Bessel beam with reduced side-lobes for excitation. (a) Annular mask used for creating a coherent superposition of zero-order and second-order Bessel beams; (b) Calculated intensity distribution of the excitation beam in y-z plane. (c) Calculated intensity distribution of excitation beam in x-y plane with z = 0. (d) Effective lateral excitation when the mixed Bessel beams are used for excitation and a first-order Bessel beam with an average power of 1 W is used for spontaneous emission depletion.

Fig. 6
Fig. 6

Modulation transfer functions for various microscopes. The frequencies are normalized to the maximum resolvable frequency under a wide-field microscope, k max = N A / ( 0.61 λ ) . A detection objective with NA = 0.8 is used in the calculations. A STED beam with an average power of 1 W is used for spontaneous emission depletion.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U ( x , y , z ) = A e j k z j λ f P ( ξ , η ) e j k f ( x ξ + y η ) e j k f 2 z ( ξ 2 + η 2 ) d ξ d η ,
U ( r , z ) = A 2 π e j k z j λ f P ( ρ ) J 0 ( k f r ρ ) e j k f 2 z ρ 2 ρ d ρ ,
P ( ρ , θ ) = { e j θ , ρ min < ρ < ρ max 0 , o t h e r w i s e ,
U ( r , φ , z ) = A 2 π e j k z j λ f e j φ J 1 ( k f r ρ ) e j k f 2 z ρ 2 ρ d ρ ,
η ps = 1+γexp[ k s τ STED ( 1+γ ) ] 1+γ

Metrics