Abstract

We present the design and fabrication of guided-mode resonant broadband reflectors operating in transverse electric (TE) polarization. The structure consists of a subwavelength one-dimensional grating with a two-part period and a nanometric homogeneous layer of amorphous silicon on a quartz substrate. A representative reflector exhibits 99% reflectance over a 380-nm spectral range spanning 1440–1820 nm. The fabrication involves thin-film deposition, interferometric lithography, and reactive ion etching. Experimental reflectance greater than 90% is achieved over a ~360-nm bandwidth. The spectral bandwidths demonstrated exceed formerly reported results for two-part periodic resonators working in TE polarization.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers

Mehrdad Shokooh-Saremi and Robert Magnusson
Opt. Express 16(22) 18249-18263 (2008)

Experimental demonstration of wideband multimodule serial reflectors

Yeong Hwan Ko, Kyu Jin Lee, and Robert Magnusson
Opt. Express 25(8) 8680-8689 (2017)

Full-color reflector using vertically stacked liquid crystal guided-mode resonators

Chun-Ta Wang, Ping-Chien Chang, Jia Jin Lin, Mao Chou Tai, Yung-Jr Hung, and Tsung-Hsien Lin
Appl. Opt. 56(14) 4219-4223 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
    [Crossref]
  2. C. C. Wang, S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
    [Crossref]
  3. M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [Crossref]
  4. M. A. Ahmed, M. Rumpel, A. Voss, T. Graf, “Applications of sub-wavelength grating mirrors in high-power lasers,” Adv. Opt. Technol. 1, 381–388 (2012).
  5. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
    [Crossref]
  6. Y. Ding, R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [Crossref] [PubMed]
  7. H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
    [Crossref]
  8. H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photon. Technol. Lett. 22(4), 203–205 (2010).
    [Crossref]
  9. K. J. Lee, R. Magnusson, “Single-layer resonant high reflector in TE polarization: Theory and experiment,” IEEE Photon. J. 3(1), 123–129 (2011).
    [Crossref]
  10. R. Magnusson, M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [Crossref] [PubMed]
  11. M. Shokooh-Saremi, R. Magnusson, “Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers,” Opt. Express 16(22), 18249–18263 (2008).
    [Crossref] [PubMed]
  12. R. Magnusson, “Flat-top resonant reflectors with sharply delimited angular spectra: an application of the Rayleigh anomaly,” Opt. Lett. 38(6), 989–991 (2013).
    [Crossref] [PubMed]
  13. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
    [Crossref]
  14. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]

2013 (3)

C. C. Wang, S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
[Crossref]

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

R. Magnusson, “Flat-top resonant reflectors with sharply delimited angular spectra: an application of the Rayleigh anomaly,” Opt. Lett. 38(6), 989–991 (2013).
[Crossref] [PubMed]

2012 (1)

M. A. Ahmed, M. Rumpel, A. Voss, T. Graf, “Applications of sub-wavelength grating mirrors in high-power lasers,” Adv. Opt. Technol. 1, 381–388 (2012).

2011 (1)

K. J. Lee, R. Magnusson, “Single-layer resonant high reflector in TE polarization: Theory and experiment,” IEEE Photon. J. 3(1), 123–129 (2011).
[Crossref]

2010 (1)

H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photon. Technol. Lett. 22(4), 203–205 (2010).
[Crossref]

2008 (2)

2007 (1)

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

2006 (1)

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
[Crossref]

2004 (2)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Y. Ding, R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[Crossref] [PubMed]

1993 (1)

1985 (1)

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Ahmed, M. A.

M. A. Ahmed, M. Rumpel, A. Voss, T. Graf, “Applications of sub-wavelength grating mirrors in high-power lasers,” Adv. Opt. Technol. 1, 381–388 (2012).

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Cheben, P.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
[Crossref]

Delâge, A.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
[Crossref]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Ding, Y.

Gao, D.

H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photon. Technol. Lett. 22(4), 203–205 (2010).
[Crossref]

Gao, Y.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

Gaylord, T. K.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Graf, T.

M. A. Ahmed, M. Rumpel, A. Voss, T. Graf, “Applications of sub-wavelength grating mirrors in high-power lasers,” Adv. Opt. Technol. 1, 381–388 (2012).

He, X.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

Hou, J.

H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photon. Technol. Lett. 22(4), 203–205 (2010).
[Crossref]

Huang, L.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Janz, S.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
[Crossref]

Lamontagne, B.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
[Crossref]

Lee, K. J.

K. J. Lee, R. Magnusson, “Single-layer resonant high reflector in TE polarization: Theory and experiment,” IEEE Photon. J. 3(1), 123–129 (2011).
[Crossref]

Li, S.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

Lin, S. D.

C. C. Wang, S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
[Crossref]

Luo, N.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Mo, W.

H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photon. Technol. Lett. 22(4), 203–205 (2010).
[Crossref]

Moharam, M. G.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Rumpel, M.

M. A. Ahmed, M. Rumpel, A. Voss, T. Graf, “Applications of sub-wavelength grating mirrors in high-power lasers,” Adv. Opt. Technol. 1, 381–388 (2012).

Shokooh-Saremi, M.

Tanev, S.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
[Crossref]

Voss, A.

M. A. Ahmed, M. Rumpel, A. Voss, T. Graf, “Applications of sub-wavelength grating mirrors in high-power lasers,” Adv. Opt. Technol. 1, 381–388 (2012).

Wang, C. C.

C. C. Wang, S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
[Crossref]

Wang, S. S.

Wu, H.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photon. Technol. Lett. 22(4), 203–205 (2010).
[Crossref]

Xiao, Y.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

Xu, D.-X.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
[Crossref]

Zhang, C.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Zhou, Z.

H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photon. Technol. Lett. 22(4), 203–205 (2010).
[Crossref]

Adv. Opt. Technol. (1)

M. A. Ahmed, M. Rumpel, A. Voss, T. Graf, “Applications of sub-wavelength grating mirrors in high-power lasers,” Adv. Opt. Technol. 1, 381–388 (2012).

Appl. Opt. (1)

IEEE Photon. J. (1)

K. J. Lee, R. Magnusson, “Single-layer resonant high reflector in TE polarization: Theory and experiment,” IEEE Photon. J. 3(1), 123–129 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (3)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett. 18(1), 13–15 (2006).
[Crossref]

H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photon. Technol. Lett. 22(4), 203–205 (2010).
[Crossref]

J. Appl. Phys. (1)

C. C. Wang, S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
[Crossref]

J. Opt. (1)

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15(3), 035703 (2013).
[Crossref]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Wideband reflector model denoting the period Ʌ, fill factor F, grating thicknesses dg, homogeneous layer thickness dh, and refractive indices of cover nc, silicon n, and substrate ns. The incident (I), reflected (R), and transmitted (T) light waves are indicated. The TE-polarized incident light’s electric field vector is orthogonal to the plane of incidence and along the grating ridges in this case. We set nc = 1, n = 3.56, and substrate ns = 1.5 in this paper.

Fig. 2
Fig. 2

Zero-order reflectance and transmittance spectra; (a) linear and (b) logarithmic plots for normal incidence of TE-polarized light. Device parameters are Λ = 960 nm, F = 0.5, dg = 320 nm, and dh = 55 nm.

Fig. 3
Fig. 3

Map of zero-order reflectance in wavelength and homogeneous layer thickness. The reflectance is quantified according to the scale bar on the right.

Fig. 4
Fig. 4

Zero-order reflectance (linear scale) and transmittance (log scale) spectra for (a) dh = 45 nm and (b) dh = 75 nm with Λ = 960 nm, F = 0.5, and dg = 320 nm.

Fig. 5
Fig. 5

Map of zero-order reflectance in wavelength and grating thickness. The reflectance is quantified according to the scale bar on the right.

Fig. 6
Fig. 6

Zero-order reflectance (linear scale) and transmittance (log scale) spectra for (a) dg = 290 nm and (b) dg = 350 nm with Λ = 960 nm, F = 0.5, and dh = 55 nm.

Fig. 7
Fig. 7

Map of zero-order reflectance in wavelength and fill factor. The reflectance is quantified according to the scale bar on the right.

Fig. 8
Fig. 8

Zero-order reflectance (linear scale) and transmittance (log scale) spectra for (a) F = 0.45 and (b) F = 0.55 with Λ = 960 nm, dg = 320 nm, and dh = 55 nm.

Fig. 9
Fig. 9

A schematic of the GMR reflector fabrication process.

Fig. 10
Fig. 10

AFM image and profile of the fabricated a-Si grating. The parameters are Λ = 958 nm, F = 0.5, and dg = 320 nm.

Fig. 11
Fig. 11

SEM top-view and cross-sectional images of a similar a-Si grating pattern on a glass substrate.

Fig. 12
Fig. 12

Schematic diagram of the optical measurement setup.

Fig. 13
Fig. 13

Calculated and experimental spectra associated with a resonant reflector with TE-polarized light at normal incidence. The parameters used for computation are Λ = 960 nm, F = 0.5, dg = 320 nm, dh = 55 nm, n = 3.56, nc = 1, and ns = 1.5.

Fig. 14
Fig. 14

Calculated and experimental spectra for a reflector for TE-polarized light at normal incidence. The parameters used for computation are Λ = 960 nm, F = 0.49, dg = 330 nm, dh = 45 nm, n = 3.56, nc = 1, and ns = 1.5.

Tables (1)

Tables Icon

Table 1 Comparison of Theoretical and Experimental Results

Metrics