Abstract

Cuboid-shaped organic microcavities containing a pyrromethene laser dye and supported upon a photonic crystal have been investigated as an approach to reducing the lasing threshold of the cavities. Multiphoton lithography facilitated fabrication of the cuboid cavities directly on the substrate or on the decoupling structure, while similar structures were fabricated on the substrate by UV lithography for comparison. Significant reduction of the lasing threshold by a factor of ~30 has been observed for cavities supported by the photonic crystal relative to those fabricated on the substrate. The lasing mode spectra of the cuboid microresonators provide strong evidence showing that the lasing modes are localized in the horizontal plane, with the shape of an inscribed diamond.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
    [CrossRef]
  2. Á. Costela, I. Garcia-Moreno, and R. Sastre, “Solid-state dye lasers,” in Tunable Laser Applications, F. J. Duarte, ed. (CRC Press, 2009).
  3. S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
    [CrossRef]
  4. L. He, Ş. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
    [CrossRef]
  5. J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [CrossRef]
  6. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).
  7. S. K. Y. Tang, R. Derda, Q. Quan, M. Lončar, G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19(3), 2204–2215 (2011).
    [CrossRef] [PubMed]
  8. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995).
    [CrossRef] [PubMed]
  9. M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
    [CrossRef] [PubMed]
  10. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  11. Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
    [CrossRef] [PubMed]
  12. E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
    [CrossRef] [PubMed]
  13. G. D. Chern, A. W. Poon, R. K. Chang, T. Ben-Messaoud, O. Alloschery, E. Toussaere, J. Zyss, S. Y. Kuo, “Direct evidence of open ray orbits in a square two-dimensional resonator of dye-doped polymers,” Opt. Lett. 29(14), 1674–1676 (2004).
    [CrossRef] [PubMed]
  14. M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
    [CrossRef]
  15. S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
    [CrossRef]
  16. C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
    [CrossRef]
  17. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  18. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  19. S. R. Marder, J.-L. Brédas, J. W. Perry, “Materials for multiphoton 3D microfabrication,” MRS Bull. 32(07), 561–565 (2007).
    [CrossRef]
  20. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
    [CrossRef] [PubMed]
  21. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [CrossRef]
  22. A. Campo, C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
    [CrossRef]
  23. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
    [CrossRef]
  24. B. F. Howell, M. G. Kuzyk, “Amplified spontaneous emission and recoverable photodegradation in polymer doped with Disperse Orange 11,” J. Opt. Soc. Am. B 19(8), 1790–1793 (2002).
    [CrossRef]
  25. I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
    [CrossRef]

2013 (2)

L. He, Ş. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

2012 (3)

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

2011 (2)

S. K. Y. Tang, R. Derda, Q. Quan, M. Lončar, G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19(3), 2204–2215 (2011).
[CrossRef] [PubMed]

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

2009 (2)

M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[CrossRef] [PubMed]

Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
[CrossRef] [PubMed]

2007 (4)

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

A. Campo, C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[CrossRef]

S. R. Marder, J.-L. Brédas, J. W. Perry, “Materials for multiphoton 3D microfabrication,” MRS Bull. 32(07), 561–565 (2007).
[CrossRef]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

1997 (1)

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

1995 (1)

1971 (1)

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Alloschery, O.

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Arnaud, C.

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

Audibert, J. F.

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

Baldacchini, T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ben-Messaoud, T.

Bittner, S.

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

Bogomolny, E.

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

Brédas, J.-L.

S. R. Marder, J.-L. Brédas, J. W. Perry, “Materials for multiphoton 3D microfabrication,” MRS Bull. 32(07), 561–565 (2007).
[CrossRef]

Brosseau, A.

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Campo, A.

A. Campo, C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[CrossRef]

Chang, R. K.

Chen, D.-R.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Chénais, S.

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

Chern, G. D.

Clavier, G.

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

Cluzel, C.

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Delezoide, C.

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

Derda, R.

Despont, M.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Djellali, N.

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

Dodabalapur, A.

Dong, C. H.

Dubertrand, R.

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

Dvorko, M.

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Fahrni, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

Forget, S.

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

Fourkas, J. T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

Gozhyk, I.

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

Greiner, C.

A. Campo, C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[CrossRef]

Guo, G. C.

Han, Z. F.

He, L.

L. He, Ş. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Howell, B. F.

Jordan, R. H.

Katz, H. E.

Kawata, S.

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Kuo, S. Y.

Kuwata-Gonokami, M.

Kuzyk, M. G.

LaBianca, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Lafargue, C.

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

Lauret, J. S.

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

Lautru, J.

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

Lebental, M.

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Li, L.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Loncar, M.

Lorenz, H.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Lozenko, S.

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

Marder, S. R.

S. R. Marder, J.-L. Brédas, J. W. Perry, “Materials for multiphoton 3D microfabrication,” MRS Bull. 32(07), 561–565 (2007).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Méallet-Renault, R.

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[CrossRef] [PubMed]

Ozawa, S.

Özdemir, S. K.

L. He, Ş. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Pansu, R.

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

Perry, J. W.

S. R. Marder, J.-L. Brédas, J. W. Perry, “Materials for multiphoton 3D microfabrication,” MRS Bull. 32(07), 561–565 (2007).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[CrossRef] [PubMed]

Poon, A. W.

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Quan, Q.

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[CrossRef] [PubMed]

Renaud, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Schilling, M. L.

Schmit, C.

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

Shank, C. V.

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Slusher, R. E.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tang, S. K. Y.

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Toussaere, E.

Tsvirkun, V.

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

Ulysse, C.

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Vettiger, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[CrossRef] [PubMed]

Wegener, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Whitesides, G. M.

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Xiao, Y. F.

Xiao, Y.-F.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Yang, L.

L. He, Ş. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Zou, C. L.

Zyss, J.

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

G. D. Chern, A. W. Poon, R. K. Chang, T. Ben-Messaoud, O. Alloschery, E. Toussaere, J. Zyss, S. Y. Kuo, “Direct evidence of open ray orbits in a square two-dimensional resonator of dye-doped polymers,” Opt. Lett. 29(14), 1674–1676 (2004).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

C. Lafargue, S. Bittner, S. Lozenko, J. Lautru, J. Zyss, C. Ulysse, C. Cluzel, M. Lebental, “Three-dimensional emission from organic Fabry-Perot microlasers,” Appl. Phys. Lett. 102(25), 251120 (2013).
[CrossRef]

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

J. Appl. Phys. (1)

S. Lozenko, N. Djellali, I. Gozhyk, C. Delezoide, J. Lautru, C. Ulysse, J. Zyss, M. Lebental, “Enhancing performance of polymer-based microlasers by a pedestal geometry,” J. Appl. Phys. 111(10), 103116 (2012).
[CrossRef]

J. Micromech. Microeng. (2)

A. Campo, C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[CrossRef]

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

L. He, Ş. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

MRS Bull. (1)

S. R. Marder, J.-L. Brédas, J. W. Perry, “Materials for multiphoton 3D microfabrication,” MRS Bull. 32(07), 561–565 (2007).
[CrossRef]

Nat. Photonics (1)

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Nature (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

M. Lebental, N. Djellali, C. Arnaud, J. S. Lauret, J. Zyss, R. Dubertrand, C. Schmit, E. Bogomolny, “Inferring periodic orbits from spectra of simply shaped microlasers,” Phys. Rev. A 76(2), 023830 (2007).
[CrossRef]

I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86(4), 043817 (2012).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

E. Bogomolny, N. Djellali, R. Dubertrand, I. Gozhyk, M. Lebental, C. Schmit, C. Ulysse, J. Zyss, “Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 036208 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[CrossRef] [PubMed]

Polym. Int. (1)

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

Other (2)

A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

Á. Costela, I. Garcia-Moreno, and R. Sastre, “Solid-state dye lasers,” in Tunable Laser Applications, F. J. Duarte, ed. (CRC Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Chemical structure of PM- 597.

Fig. 2
Fig. 2

SEM images of microlasers. (a) cuboid OML with PC pedestal structure fabricated by MPL; (b) cuboid OML fabricated on glass substrate by MPL; (c-e) OMLs fabricated by UV lithography.

Fig. 3
Fig. 3

(a) Schematic drawing of the experimental setup (not to scale). (b) optical image of a lasing cuboid OML fabricated by MPL on a PC pedestal and (c) optical image of a cuboid OML on a Si/SiO2 substrate fabricated by UV lithography. Note the duplication of the images due to reflection from the substrate.

Fig. 4
Fig. 4

Lasing spectrum of a cuboid cavity (50 × 50 × 25µm3) fabricated by UV lithography. The insets show the Fourier transform of the lasing spectrum and a sketch of the diamond periodic orbit.

Fig. 5
Fig. 5

Normalized lasing spectra of a cuboid cavity (58 × 58 × 32µm3) on a PC pedestal fabricated by MPL pumped at two different intensities.

Fig. 6
Fig. 6

(a) Optical length versus cavity edge length a for cuboid cavities with a height of h = 42 µm, fabricated by MPL. The blue line is the optical length of the diamond orbit for a group refractive index of ng = 1.51. (b) Optical length versus the height of cavities with edge length a = 58 µm. The blue line is the optical wavelength of the diamond orbit for a group refractive index of ng = 1.51.

Fig. 7
Fig. 7

Photostability curve of a cuboid OMLs (58 × 58 × 32µm3) on a PC pedestal fabricated by MPL and pumped just above the threshold.

Fig. 8
Fig. 8

Lasing threshold data for different OMLs of cuboid shape. The intensity of the laser emission is plotted with respect to the pump intensity for a cavity fabricated by MPL on a PC pedestal (red circles), a cavity fabricated by MPL directly on the glass substrate (blue squares), and a cavity fabricated by UV lithography on a Si/SiO2 wafer (black triangles). The lines are guides to the eye.

Fig. 9
Fig. 9

Lasing threshold curves for OMLs with constant 36 µm edge lengths and varying heights fabricated directly on the substrate. For these measurements, 6 ns, 532 nm laser pulses were used for excitation.

Fig. 10
Fig. 10

Lasing threshold data for OMLs with constant 36 µm edge lengths and varying heights fabricated directly on the substrate (blue) or on a photonic crystal pedestal (red). For these measurements, 6 ns, 532 nm laser pulses were used for excitation.

Fig. 11
Fig. 11

Threshold curves of resonances belonging to four different families of resonances of a cuboid cavity (58 × 58 × 32 µm3) on a PC pedestal fabricated by MPL. The inset shows a portion of the lasing spectrum with the resonances identified.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n l po k m =2πm+φ
Δk= 2π n g l po

Metrics