Abstract

We demonstrate efficient guided-mode resonant polarization-controlled tunable color filters. The devices consist of subwavelength gratings that are partially etched into a thin silicon-nitride film deposited on a glass substrate. Two color filters with grating periods of 300 nm and 370 nm are designed and fabricated. The 300-nm device exhibits green and blue colors and the 370-nm device generates red and yellow colors for TE and TM polarization, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies exceeding 90% for TE polarization and 80% for TM polarization. The devices may find application in displays, image sensors, and biomedical imaging technologies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
    [CrossRef]
  2. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
    [CrossRef]
  3. I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
    [CrossRef]
  4. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
    [CrossRef]
  5. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  6. Y. Ding, R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [CrossRef] [PubMed]
  7. R. Magnusson, “The complete biosensor,” J. Biosensors and Bioelectronics 04(02), 1–2 (2013).
    [CrossRef]
  8. T. Khaleque, R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J. Nanophotonics. 8(1), 083995 (2014).
    [CrossRef]
  9. M. J. Uddin, R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photon. Technol. Lett. 25(15), 1412–1415 (2013).
    [CrossRef]
  10. M. J. Uddin, R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
    [CrossRef] [PubMed]
  11. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [CrossRef]
  12. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
    [CrossRef] [PubMed]
  13. Y. Kanamori, M. Shimono, K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
    [CrossRef]
  14. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
    [CrossRef] [PubMed]
  15. N. Nguyen-Huu, Y. Lo, Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
    [CrossRef]
  16. A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
    [CrossRef]
  17. T. Xu, Y. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
    [CrossRef]
  18. R. Magnusson, M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
    [CrossRef] [PubMed]
  19. M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
    [CrossRef]
  20. Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
    [CrossRef]
  21. E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
    [CrossRef] [PubMed]
  22. T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [CrossRef] [PubMed]
  23. C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21(23), 28783–28793 (2013).
    [CrossRef] [PubMed]
  24. R. Magnusson, Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
    [CrossRef]
  25. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
    [CrossRef]

2014

T. Khaleque, R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J. Nanophotonics. 8(1), 083995 (2014).
[CrossRef]

2013

2012

M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[CrossRef]

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

2011

N. Nguyen-Huu, Y. Lo, Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[CrossRef]

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

2010

T. Xu, Y. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[CrossRef]

2009

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[CrossRef]

E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

2008

2007

2006

R. Magnusson, Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
[CrossRef]

Y. Kanamori, M. Shimono, K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

2004

1999

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

1993

1989

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

1985

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[CrossRef]

1979

P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

Chen, Y.

N. Nguyen-Huu, Y. Lo, Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[CrossRef]

Cheong, B. H.

Cho, E. H.

Choi, H. Y.

Crozier, K. B.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Ding, Y.

R. Magnusson, Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
[CrossRef]

Y. Ding, R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[CrossRef] [PubMed]

Ellenbogen, T.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Furuta, T.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[CrossRef]

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Guo, L. J.

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

T. Xu, Y. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[CrossRef]

Hane, K.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[CrossRef]

Y. Kanamori, M. Shimono, K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Hasegawa, S.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[CrossRef]

Kanamori, Y.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[CrossRef]

Y. Kanamori, M. Shimono, K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Kaplan, A. F.

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

Katsube, H.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[CrossRef]

Khaleque, T.

T. Khaleque, R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J. Nanophotonics. 8(1), 083995 (2014).
[CrossRef]

Kim, E. S.

Kim, H. S.

Kim, S. H.

Lee, H. S.

Lee, K. D.

Lee, S. S.

Lo, Y.

N. Nguyen-Huu, Y. Lo, Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[CrossRef]

Luo, X.

T. Xu, Y. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[CrossRef]

Ma, D. J.

Magnusson, R.

T. Khaleque, R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J. Nanophotonics. 8(1), 083995 (2014).
[CrossRef]

M. J. Uddin, R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[CrossRef] [PubMed]

R. Magnusson, “The complete biosensor,” J. Biosensors and Bioelectronics 04(02), 1–2 (2013).
[CrossRef]

M. J. Uddin, R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photon. Technol. Lett. 25(15), 1412–1415 (2013).
[CrossRef]

M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[CrossRef]

R. Magnusson, M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
[CrossRef] [PubMed]

R. Magnusson, Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
[CrossRef]

Y. Ding, R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[CrossRef] [PubMed]

S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

Mashev, L.

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Moharam, M. G.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[CrossRef]

Neviere, M.

P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Nguyen-Huu, N.

N. Nguyen-Huu, Y. Lo, Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[CrossRef]

Park, C. H.

Park, C. S.

Park, J. D.

Park, N. C.

Park, Y. P.

Popov, E.

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Prudnikov, O.

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

Seo, K.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Shimono, M.

Y. Kanamori, M. Shimono, K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Shokooh-Saremi, M.

Shrestha, V. R.

Sohn, J. S.

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Sychugov, V. A.

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Tishchenko, A. V.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Uddin, M. J.

M. J. Uddin, R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[CrossRef] [PubMed]

M. J. Uddin, R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photon. Technol. Lett. 25(15), 1412–1415 (2013).
[CrossRef]

M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[CrossRef]

Vincent, P.

P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Wang, S. S.

Wu, Y.

T. Xu, Y. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[CrossRef]

Xianyua, W.

Xu, T.

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

T. Xu, Y. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[CrossRef]

Yoon, Y. T.

Appl. Opt.

Appl. Phys. (Berl.)

P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Appl. Phys. Lett.

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

Displays

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Kanamori, M. Shimono, K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[CrossRef]

R. Magnusson, Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006).
[CrossRef]

M. J. Uddin, R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photon. Technol. Lett. 25(15), 1412–1415 (2013).
[CrossRef]

J. Biosensors and Bioelectronics

R. Magnusson, “The complete biosensor,” J. Biosensors and Bioelectronics 04(02), 1–2 (2013).
[CrossRef]

J. Mod. Opt.

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

J. Nanophotonics.

T. Khaleque, R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J. Nanophotonics. 8(1), 083995 (2014).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys. 48(6), 06FH04 (2009).
[CrossRef]

Nano Lett.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Nat. Commun.

T. Xu, Y. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun. 1(5), 1058 (2010).
[CrossRef]

Opt. Commun.

N. Nguyen-Huu, Y. Lo, Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun. 284(10-11), 2473–2479 (2011).
[CrossRef]

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[CrossRef]

Opt. Express

Proc. IEEE

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[CrossRef]

Sov. J. Quantum Electron.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Basic GMR color filter structure showing materials and device parameters with dg = grating depth, dh = thickness of homogeneous layer, F = fill factor, Λ = period, I = incident light wave, T0 = zero-order transmittance, and R0 = zero-order reflectance. The input light wave with electric-field vector (E) has TE and TM polarization components as indicated.

Fig. 2
Fig. 2

(a) Computed spectral response of the green-blue polarization-controlled tunable color filter; design parameters are dg = 55 nm, dh = 110 nm, F = 0.5, and Ʌ = 300 nm. (b) Computed spectral response of the red-yellow filter; design parameters are dg = 55 nm, dh = 110 nm, F = 0.5, and Ʌ = 370 nm. We use n = 2.02 and ns = 1.48 in both cases.

Fig. 3
Fig. 3

(a) Spectral response of a blue pixel with TM-polarized obliquely incident light. (b) Effect of off-normal incident light on the perceived color emanating from the pixel.

Fig. 4
Fig. 4

Summary of the fabrication steps of the color filter.

Fig. 5
Fig. 5

AFM image showing the grating profile of a green-blue PCTCF. Device parameters are dg ≈54 nm, dh ≈96 nm, Ʌ ≈301 nm, and F ≈0.49.

Fig. 6
Fig. 6

SEM image of the green-blue PCTCF (a) top view and (b) cross-sectional view. Device parameters from SEM measurements are dg ≈55 nm, dh ≈90 nm, Ʌ ≈306 nm, and F ≈0.45.

Fig. 7
Fig. 7

Spectral response of the green-blue PCTCF. For TM (φ = 0°) polarization, we have a blue filter with R0 = 80% at λc = 480 nm. For TE (φ = 90°) polarization, we have a green filter with R0 = 90% at λc = 518 nm. We denote λc = center wavelength of a pixel, where the efficiency is maximum.

Fig. 8
Fig. 8

Spectral response of the red-yellow PCTCF. For TM polarization, we have a yellow filter with R0 = 80% at λc = 573 nm. For TE polarization, we have a green filter with R0 = 90% at λc = 607 nm. We denote λc = center wavelength of a pixel, where the efficiency is maximum.

Fig. 9
Fig. 9

(a) CIE chromaticity diagram showing the color gamut of the prototype tunable color filters. (b) Perceived colors constructed from the experimentally observed reflectance values.

Metrics