Abstract

We propose a new type of photonic analog-to-digital converter (ADC), designed for high-resolution (>7 bit) and high sampling rates (scalable to tens of GS/s). It is based on encoding the input analog voltage signal onto the phase of an optical pulse stream originating from a mode-locked laser, and uses spatial oversampling as a means to improve the conversion resolution. This paper describes the concept of spatial oversampling and draws its similarities to the commonly used temporal oversampling. The design and fabrication of a LiNbO3/silica hybrid photonic integrated circuit for implementing the spatial oversampling is shown, and its abilities are demonstrated experimentally by digitizing gigahertz signals (frequencies up to 18GHz) at an undersampled rate of 2.56GS/s with a conversion resolution of up to 7.6 effective bits. Oversampling factors of 1-4 are demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
    [CrossRef]
  2. A. Bartels, S. A. Diddams, T. M. Ramond, L. Hollberg, “Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator,” Opt. Lett. 28(8), 663–665 (2003).
    [CrossRef] [PubMed]
  3. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [CrossRef] [PubMed]
  4. A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
    [CrossRef] [PubMed]
  5. A. O. J. Wiberg, D. J. Esman, L. Liu, Z. I. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” Optical Communication (ECOC 2013).
  6. T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).
  7. C. Xu, X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
    [CrossRef] [PubMed]
  8. J. Stigwall, S. Galt, “Demonstration and Analysis of a 40-Gigasample/s Interferometric Analog-to-Digital Converter,” J. Lightwave Technol. 24(3), 1247–1256 (2006).
    [CrossRef]
  9. M. Jarrahi, R. F. W. Pease, D. A. B. Miller, T. H. Lee, “Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
    [CrossRef]
  10. W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007).
    [CrossRef]
  11. A. J. Price, R. Zanoni, and P. J. Morgan, “Photonic analog-to-digital converter,” US Patent No. 7876246 B1, (2011).
  12. T. D. Gathman, J. F. Buckwalter, “An 8-bit Integrate-and-Sample Receiver for Rate-Scalable Photonic Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 60(12), 3798–3809 (2012).
    [CrossRef]
  13. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
    [CrossRef] [PubMed]
  14. D. R. Reilly, S. X. Wang, and G. S. Kanter, “Optical under-sampling for high resolution analog-to-digital conversion,” in Proceedings of Avionics, Fiber- Optics and Photonics Technology Conference (AVFOP), 35–36 (2011).
  15. D. Sinefeld, Y. Fattal, D. M. Marom, “Generation of WDM adaptive-rate pulse bursts by cascading narrow/wideband tunable optical dispersion compensators,” Opt. Lett. 37(20), 4290–4292 (2012).
    [CrossRef] [PubMed]
  16. D. Sinefeld, D. Shayovitz, O. Golani, D. M. Marom, “Tunable WDM Sampling Pulse Streams using a Spatial Phase Modulator in a Biased Pulse Shaper,” Opt. Lett. 39(3), 642–645 (2014).
    [CrossRef] [PubMed]
  17. J. van Howe, J. Hansryd, C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29(13), 1470–1472 (2004).
    [CrossRef] [PubMed]
  18. H. Q. Lam, K. E. K. Lee, P. H. Lim, “Time- and wavelength-interleaved optical pulse train generation based on dispersion spreading and sectional compression,” Opt. Lett. 37(12), 2349–2351 (2012).
    [CrossRef] [PubMed]
  19. J. Vasseur, M. Hanna, J. M. Dudley, J.-P. Goedgebuer, “Generation of interleaved pulses on time-wavelength grid by actively modelocked fibre laser,” Electron. Lett. 40(14), 901 (2004).
    [CrossRef]
  20. H. F. Taylor, “An optical analog-to-digital converter - Design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
    [CrossRef]
  21. L. Tan and D. S. Processing, Fundamentals and Applications, (Academic Press. 2008).
  22. P. Carbone, D. Petri, “Effect of Additive Dither on the Resolution of Ideal Quantizers,” IEEE Trans. Instrum. Meas. 43(3), 389–396 (1994).
  23. S.-H. Jeong, K. Morito, “Optical 60° hybrid for demodulating six-level DPSK signal,” Opt. Lett. 36(3), 322–324 (2011).
    [CrossRef] [PubMed]
  24. S.-H. Jeong, K. Morito, “Optical 45° hybrid for demodulating 8-ary DPSK signal,” Opt. Express 18(8), 8482–8490 (2010).
    [CrossRef] [PubMed]
  25. R. M. Gray, D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, 44(6), 2325–2383 (1998).
    [CrossRef]
  26. L. G. Kazovsky, L. Curtis, W. C. Young, N. K. Cheung, “All-fiber 90 ° optical hybrid for coherent communications,” Appl. Opt. 26(3), 437–439 (1987).
    [CrossRef] [PubMed]
  27. L. B. Soldano, E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  28. N. G. Walker, J. E. Carroll, “Simultaneous phase and amplitude measurements on optical signals using a multiport junction,” Electron. Lett. 20(23), 981–983 (1984).
    [CrossRef]
  29. C. R. Doerr, D. M. Gill, A. H. Gnauck, L. L. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, L. T. Gomez, “Monolithic Demodulator for 40-Gb/s DQPSK Using a Star Coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
    [CrossRef]

2014 (1)

2012 (6)

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
[CrossRef] [PubMed]

H. Q. Lam, K. E. K. Lee, P. H. Lim, “Time- and wavelength-interleaved optical pulse train generation based on dispersion spreading and sectional compression,” Opt. Lett. 37(12), 2349–2351 (2012).
[CrossRef] [PubMed]

D. Sinefeld, Y. Fattal, D. M. Marom, “Generation of WDM adaptive-rate pulse bursts by cascading narrow/wideband tunable optical dispersion compensators,” Opt. Lett. 37(20), 4290–4292 (2012).
[CrossRef] [PubMed]

A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
[CrossRef] [PubMed]

T. D. Gathman, J. F. Buckwalter, “An 8-bit Integrate-and-Sample Receiver for Rate-Scalable Photonic Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 60(12), 3798–3809 (2012).
[CrossRef]

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

2011 (1)

2010 (1)

2008 (1)

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, T. H. Lee, “Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

2007 (2)

W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007).
[CrossRef]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[CrossRef] [PubMed]

2006 (2)

2004 (2)

J. van Howe, J. Hansryd, C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29(13), 1470–1472 (2004).
[CrossRef] [PubMed]

J. Vasseur, M. Hanna, J. M. Dudley, J.-P. Goedgebuer, “Generation of interleaved pulses on time-wavelength grid by actively modelocked fibre laser,” Electron. Lett. 40(14), 901 (2004).
[CrossRef]

2003 (2)

1999 (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[CrossRef]

1998 (1)

R. M. Gray, D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, 44(6), 2325–2383 (1998).
[CrossRef]

1995 (1)

L. B. Soldano, E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1994 (1)

P. Carbone, D. Petri, “Effect of Additive Dither on the Resolution of Ideal Quantizers,” IEEE Trans. Instrum. Meas. 43(3), 389–396 (1994).

1987 (1)

1984 (1)

N. G. Walker, J. E. Carroll, “Simultaneous phase and amplitude measurements on optical signals using a multiport junction,” Electron. Lett. 20(23), 981–983 (1984).
[CrossRef]

1979 (1)

H. F. Taylor, “An optical analog-to-digital converter - Design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[CrossRef]

Alic, N.

Ataie, V.

Bartels, A.

Buckwalter, J. F.

T. D. Gathman, J. F. Buckwalter, “An 8-bit Integrate-and-Sample Receiver for Rate-Scalable Photonic Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 60(12), 3798–3809 (2012).
[CrossRef]

Buhl, L. L.

Byun, H.

Cappuzzo, M. A.

Carbone, P.

P. Carbone, D. Petri, “Effect of Additive Dither on the Resolution of Ideal Quantizers,” IEEE Trans. Instrum. Meas. 43(3), 389–396 (1994).

Carroll, J. E.

N. G. Walker, J. E. Carroll, “Simultaneous phase and amplitude measurements on optical signals using a multiport junction,” Electron. Lett. 20(23), 981–983 (1984).
[CrossRef]

Chen, E. Y.

Chen, J.

Cheung, N. K.

Curtis, L.

Dahlem, M. S.

Diddams, S. A.

DiLello, N. A.

Doerr, C. R.

Dudley, J. M.

J. Vasseur, M. Hanna, J. M. Dudley, J.-P. Goedgebuer, “Generation of interleaved pulses on time-wavelength grid by actively modelocked fibre laser,” Electron. Lett. 40(14), 901 (2004).
[CrossRef]

Fattal, Y.

Galt, S.

Gathman, T. D.

T. D. Gathman, J. F. Buckwalter, “An 8-bit Integrate-and-Sample Receiver for Rate-Scalable Photonic Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 60(12), 3798–3809 (2012).
[CrossRef]

Geis, M. W.

Gill, D. M.

Gnauck, A. H.

Goedgebuer, J.-P.

J. Vasseur, M. Hanna, J. M. Dudley, J.-P. Goedgebuer, “Generation of interleaved pulses on time-wavelength grid by actively modelocked fibre laser,” Electron. Lett. 40(14), 901 (2004).
[CrossRef]

Golani, O.

Gomez, L. T.

Gray, R. M.

R. M. Gray, D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, 44(6), 2325–2383 (1998).
[CrossRef]

Grein, M. E.

Hanna, M.

J. Vasseur, M. Hanna, J. M. Dudley, J.-P. Goedgebuer, “Generation of interleaved pulses on time-wavelength grid by actively modelocked fibre laser,” Electron. Lett. 40(14), 901 (2004).
[CrossRef]

Hansryd, J.

Hollberg, L.

Holzwarth, C. W.

Hoyt, J. L.

Ippen, E. P.

Itoh, K.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

Jarrahi, M.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, T. H. Lee, “Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

Jeong, S.-H.

Kärtner, F. X.

Kazovsky, L. G.

Khilo, A.

Konishi, T.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

Kuo, B. P.-P.

Lam, H. Q.

Lee, K. E. K.

Lee, T. H.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, T. H. Lee, “Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

Li, W.

W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007).
[CrossRef]

Lim, P. H.

Liu, L.

Liu, X.

Lyszczarz, T. M.

Marom, D. M.

Matsui, H.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

Miller, D. A. B.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, T. H. Lee, “Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

Morito, K.

Motamedi, A.

Myslivets, E.

Nejadmalayeri, A. H.

Neuhoff, D. L.

R. M. Gray, D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, 44(6), 2325–2383 (1998).
[CrossRef]

Orcutt, J. S.

Pease, R. F. W.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, T. H. Lee, “Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

Peng, M. Y.

Pennings, E. C. M.

L. B. Soldano, E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Perrott, M.

Petri, D.

P. Carbone, D. Petri, “Effect of Additive Dither on the Resolution of Ideal Quantizers,” IEEE Trans. Instrum. Meas. 43(3), 389–396 (1994).

Popovic, M. A.

Radic, S.

Ram, R. J.

Ramond, T. M.

Sander, M. Y.

Satoh, T.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

Shayovitz, D.

Sinefeld, D.

Smith, H. I.

Soldano, L. B.

L. B. Soldano, E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Sorace-Agaskar, C. M.

Spector, S. J.

Stigwall, J.

Sun, J.

Takahashi, K.

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

Taylor, H. F.

H. F. Taylor, “An optical analog-to-digital converter - Design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[CrossRef]

Tong, Z.

Valley, G. C.

van Howe, J.

Vasseur, J.

J. Vasseur, M. Hanna, J. M. Dudley, J.-P. Goedgebuer, “Generation of interleaved pulses on time-wavelength grid by actively modelocked fibre laser,” Electron. Lett. 40(14), 901 (2004).
[CrossRef]

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[CrossRef]

Walker, N. G.

N. G. Walker, J. E. Carroll, “Simultaneous phase and amplitude measurements on optical signals using a multiport junction,” Electron. Lett. 20(23), 981–983 (1984).
[CrossRef]

Wang, J. P.

Wiberg, A. O. J.

Winzer, P. J.

Wong-Foy, A.

Wu, Q.

W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007).
[CrossRef]

Xu, C.

Yao, M.

W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007).
[CrossRef]

Yoon, J. U.

Young, W. C.

Zhang, H.

W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007).
[CrossRef]

Zhang, Z.

W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007).
[CrossRef]

Zhou, G.-R.

Appl. Opt. (1)

Electron. Lett. (2)

N. G. Walker, J. E. Carroll, “Simultaneous phase and amplitude measurements on optical signals using a multiport junction,” Electron. Lett. 20(23), 981–983 (1984).
[CrossRef]

J. Vasseur, M. Hanna, J. M. Dudley, J.-P. Goedgebuer, “Generation of interleaved pulses on time-wavelength grid by actively modelocked fibre laser,” Electron. Lett. 40(14), 901 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. F. Taylor, “An optical analog-to-digital converter - Design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).

W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007).
[CrossRef]

IEEE Trans. Inform. Theory, (1)

R. M. Gray, D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, 44(6), 2325–2383 (1998).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

P. Carbone, D. Petri, “Effect of Additive Dither on the Resolution of Ideal Quantizers,” IEEE Trans. Instrum. Meas. 43(3), 389–396 (1994).

IEEE Trans. Microw. Theory Tech. (2)

T. D. Gathman, J. F. Buckwalter, “An 8-bit Integrate-and-Sample Receiver for Rate-Scalable Photonic Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 60(12), 3798–3809 (2012).
[CrossRef]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, T. H. Lee, “Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (4)

Opt. Lett. (7)

Other (4)

L. Tan and D. S. Processing, Fundamentals and Applications, (Academic Press. 2008).

A. O. J. Wiberg, D. J. Esman, L. Liu, Z. I. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” Optical Communication (ECOC 2013).

D. R. Reilly, S. X. Wang, and G. S. Kanter, “Optical under-sampling for high resolution analog-to-digital conversion,” in Proceedings of Avionics, Fiber- Optics and Photonics Technology Conference (AVFOP), 35–36 (2011).

A. J. Price, R. Zanoni, and P. J. Morgan, “Photonic analog-to-digital converter,” US Patent No. 7876246 B1, (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) layout of a photonic ADC with information encoded on the optical phase, self-coherent detection with an optical hybrid supporting spatial oversampling. (b) Discernible phase states in the I/Q plane using 3 bit ideal quantizers and for N = 4 (i), 8 (ii), 16 (iii).

Fig. 2
Fig. 2

(a) layout of a star-coupler based optical hybrid. (b) Power distribution at the slab lens output plane for different signal phases. (c) Simulation of field distribution throughout the slab lens, for various input phases. (d) Image of the integrated LiNbO3-silica PIC. (e) Zoom in on star coupler (silica side).

Fig. 3
Fig. 3

Experimental setup and device characterization. (a) OVA measurement of the photonic ADC PIC, showing channel loss, phase offsets and modulation depth. (b) Stability measurement of the interferometric setup, and (c) Experimental setup used to evaluate system performance.

Fig. 4
Fig. 4

Performance estimation and the effect of oversampling. (a) The ideal quantization limit (ADC resolution much smaller than detection noise) for (i) 90° hybrid, (ii) 45° hybrid and (iii) 22.5° hybrid. The number of levels increases with port count, resulting in finer quantization. (b) Power spectrum of a digitized 12.9GHz signal in the detection-noise limited case. Results show a lowering of the noise floor with increasing the spatial oversampling factor. (c) Projected full-scale resolution for several input frequencies and hybrid scales.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E n S+Rexp( i 2πn /N ) , n=0,1,,N1
I n =( 4 /N )| SR |cos( 2πn /N Δφ ) , n=0,1,,N/2 1
( I Q )= 1 2 n=0 N/21 I n ( cos( 2πn /N ) sin( 2πn /N ) )= P 0 ( cos( Δφ ) sin( Δφ ) ) , Δφ= tan 1 (I,Q)
e n = cos( 2πn /N Δφ ) 2 B1 / 2 B1 , n=0,1,,N/2 1
( I Q )= 2 N n=0 N/21 e n ( cos( 2πn /N ) sin( 2πn /N ) )=( cos( Δφ ) sin( Δφ ) )
B φ B+ log 2 N
e n =cos( 2πn /N Δφ )+ ε n , n=0,1,,N/2 1
σ 2 = 1 12 2 2B
( I Q )= 2 N n=0 N/21 e n ( cos( 2πn /N ) sin( 2πn /N ) )=( cos( Δφ ) sin( Δφ ) ) + 2 N n=0 N/21 ε n ( cos( 2πn /N ) sin( 2πn /N ) )
( var(i) var(q) )=var( 2 N n=0 N/21 σ 2 ( cos 2 ( 2πn /N ) sin 2 ( 2πn /N ) ) )= 4 N σ 2
SN R φ = π 2 N 4 σ 2
ENOB=B+ log 2 π+ 1 2 log 2 ( N/4 )
E(ξ)=exp( ξ 2 / Δ 2 )[ Sδ( ξ+d/2 )+Rδ( ξd/2 ) ]
P( x )( | R | 2 + | S | 2 +2| SR |cos( 2π f x x+Δφ ) )exp( x 2 W 2 )
x n = ( 2nN1 ) / ( 2N f x ) n=1,,N

Metrics