Abstract

Light emitter based on Ge quantum dots embedded in photonic crystal ring resonator is designed and fabricated. Six sharp resonant peaks dominate the photoluminescence (PL) spectrum ranging from 1500 to 1600 nm at room temperature. The light emission enhancement is due to Purcell effect and high collection efficiency of the PCRR verified by calculated far-field patterns. The Purcell factor of the PCRR is estimated from enhancement factor and increased collection efficiency. The linewidth of the emission of a single Ge quantum dot is estimated from the Purcell factor.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2(1), 1–6 (2010).
    [CrossRef]
  2. M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
    [CrossRef]
  3. J. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki, “Observation of whispering-gallery modes in Si microdisks at room temperature,” Appl. Phys. Lett. 90(14), 141102 (2007).
    [CrossRef]
  4. S. Nakayama, S. Ishida, S. Iwamoto, Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
    [CrossRef]
  5. A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
    [CrossRef]
  6. W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
    [CrossRef]
  7. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
    [CrossRef] [PubMed]
  8. Y. De Koninck, G. Roelkens, R. Baets, “Design of a hybrid III-V-on-silicon microlaser with resonant cavity mirrors,” IEEE Photon. J. 5(2), 2700413 (2013).
    [CrossRef]
  9. S. Fukatsu, H. Sunamura, Y. Shiraki, S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
    [CrossRef]
  10. T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
    [CrossRef]
  11. J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
    [CrossRef]
  12. M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16(12), 8780–8791 (2008).
    [CrossRef] [PubMed]
  13. X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
    [CrossRef]
  14. Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
    [CrossRef]
  15. X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012).
    [CrossRef] [PubMed]
  16. Z. Qiang, W. Zhou, R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15(4), 1823–1831 (2007).
    [CrossRef] [PubMed]
  17. S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
    [CrossRef]
  18. X. Ren, L. Feng, Z. Lin, J. Feng, “Experimental demonstration of ultracompact air hole photonic crystal ring resonator fabricated on silicon-on-insulator wafer,” Opt. Lett. 38(9), 1416–1418 (2013).
    [CrossRef] [PubMed]
  19. Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014).
    [CrossRef] [PubMed]
  20. F. Monifi, A. Ghaffari, M. Djavid, M. S. Abrishamian, “Three output port channel-drop filter based on photonic crystals,” Appl. Opt. 48(4), 804–809 (2009).
    [CrossRef] [PubMed]
  21. M. Djavid, F. Monifi, A. Ghaffari, M. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281(15-16), 4028–4032 (2008).
    [CrossRef]
  22. P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
    [CrossRef]
  23. T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
    [CrossRef]
  24. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
    [CrossRef]
  25. A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
    [CrossRef]
  26. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  27. I. Sychugov, R. Juhasz, J. Valenta, J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
    [CrossRef] [PubMed]

2014 (1)

2013 (4)

X. Ren, L. Feng, Z. Lin, J. Feng, “Experimental demonstration of ultracompact air hole photonic crystal ring resonator fabricated on silicon-on-insulator wafer,” Opt. Lett. 38(9), 1416–1418 (2013).
[CrossRef] [PubMed]

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

Y. De Koninck, G. Roelkens, R. Baets, “Design of a hybrid III-V-on-silicon microlaser with resonant cavity mirrors,” IEEE Photon. J. 5(2), 2700413 (2013).
[CrossRef]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

2012 (4)

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012).
[CrossRef] [PubMed]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

2011 (2)

S. Nakayama, S. Ishida, S. Iwamoto, Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[CrossRef]

T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

2010 (1)

R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2(1), 1–6 (2010).
[CrossRef]

2009 (1)

2008 (2)

M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16(12), 8780–8791 (2008).
[CrossRef] [PubMed]

M. Djavid, F. Monifi, A. Ghaffari, M. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281(15-16), 4028–4032 (2008).
[CrossRef]

2007 (5)

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

J. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki, “Observation of whispering-gallery modes in Si microdisks at room temperature,” Appl. Phys. Lett. 90(14), 141102 (2007).
[CrossRef]

Z. Qiang, W. Zhou, R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15(4), 1823–1831 (2007).
[CrossRef] [PubMed]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[CrossRef]

2005 (1)

I. Sychugov, R. Juhasz, J. Valenta, J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[CrossRef] [PubMed]

2002 (1)

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

2000 (1)

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

1998 (1)

M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
[CrossRef]

1997 (1)

S. Fukatsu, H. Sunamura, Y. Shiraki, S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

1946 (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abrishamian, M.

M. Djavid, F. Monifi, A. Ghaffari, M. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281(15-16), 4028–4032 (2008).
[CrossRef]

Abrishamian, M. S.

Alija, A. R.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Andreani, L. C.

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Aniel, F.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Arakawa, Y.

S. Nakayama, S. Ishida, S. Iwamoto, Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[CrossRef]

Baets, R.

Y. De Koninck, G. Roelkens, R. Baets, “Design of a hybrid III-V-on-silicon microlaser with resonant cavity mirrors,” IEEE Photon. J. 5(2), 2700413 (2013).
[CrossRef]

Bensahel, D.

M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16(12), 8780–8791 (2008).
[CrossRef] [PubMed]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Boninelli, S.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

Boucaud, P.

M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16(12), 8780–8791 (2008).
[CrossRef] [PubMed]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Brunhes, T.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Campidelli, Y.

M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16(12), 8780–8791 (2008).
[CrossRef] [PubMed]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Cardile, P.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

Chalcraft, A.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Checoury, X.

Chen, C.-C.

T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Chen, K.

M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
[CrossRef]

Chiba, T.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012).
[CrossRef] [PubMed]

Choi, W. K.

T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Choi, Y.-S.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

David, S.

De Koninck, Y.

Y. De Koninck, G. Roelkens, R. Baets, “Design of a hybrid III-V-on-silicon microlaser with resonant cavity mirrors,” IEEE Photon. J. 5(2), 2700413 (2013).
[CrossRef]

Djavid, M.

F. Monifi, A. Ghaffari, M. Djavid, M. S. Abrishamian, “Three output port channel-drop filter based on photonic crystals,” Appl. Opt. 48(4), 804–809 (2009).
[CrossRef] [PubMed]

M. Djavid, F. Monifi, A. Ghaffari, M. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281(15-16), 4028–4032 (2008).
[CrossRef]

Dotor, M. L.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

El Kurdi, M.

Faini, G.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Feng, J.

Feng, L.

Fox, A. M.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Franzò, G.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

Fukatsu, S.

S. Fukatsu, H. Sunamura, Y. Shiraki, S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

Galli, M.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Gao, G.

Gerace, D.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

Ghaffari, A.

F. Monifi, A. Ghaffari, M. Djavid, M. S. Abrishamian, “Three output port channel-drop filter based on photonic crystals,” Appl. Opt. 48(4), 804–809 (2009).
[CrossRef] [PubMed]

M. Djavid, F. Monifi, A. Ghaffari, M. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281(15-16), 4028–4032 (2008).
[CrossRef]

Golmayo, D.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Hernandez, C.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Hongjie, W.

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

Hopkinson, M.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Hsiao, F.-L.

T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Huang, X.

M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
[CrossRef]

Huang, Z.

Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014).
[CrossRef] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

Ikegami, Y.

J. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki, “Observation of whispering-gallery modes in Si microdisks at room temperature,” Appl. Phys. Lett. 90(14), 141102 (2007).
[CrossRef]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[CrossRef]

Ishida, S.

S. Nakayama, S. Ishida, S. Iwamoto, Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[CrossRef]

Iwamoto, S.

S. Nakayama, S. Ishida, S. Iwamoto, Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[CrossRef]

Jianguang, L.

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

Jiashun, Z.

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

Juhasz, R.

I. Sychugov, R. Juhasz, J. Valenta, J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[CrossRef] [PubMed]

Junming, A.

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

Kermarrec, O.

M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16(12), 8780–8791 (2008).
[CrossRef] [PubMed]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Kim, G.-H.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

Kim, J.-S.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

Kim, S.-H.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

Kimerling, L. C.

Koch, T. L.

Komiyama, S.

S. Fukatsu, H. Sunamura, Y. Shiraki, S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

Krauss, T. F.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Lam, S.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Lee, C.

T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Lee, Y.-H.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

Li, D.

Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014).
[CrossRef] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

Li, J.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

Li, K.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

Li, W.

M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
[CrossRef]

Lin, Z.

Linnros, J.

I. Sychugov, R. Juhasz, J. Valenta, J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[CrossRef] [PubMed]

Liu, H.-Y.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Liu, J.

Liu, Z.

M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
[CrossRef]

Lo Savio, R.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

Lourtioz, J.-M.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Mai, T. T.

T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Martínez, L. J.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Maruizumi, T.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012).
[CrossRef] [PubMed]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

Michel, J.

Monifi, F.

F. Monifi, A. Ghaffari, M. Djavid, M. S. Abrishamian, “Three output port channel-drop filter based on photonic crystals,” Appl. Opt. 48(4), 804–809 (2009).
[CrossRef] [PubMed]

M. Djavid, F. Monifi, A. Ghaffari, M. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281(15-16), 4028–4032 (2008).
[CrossRef]

Nakata, Y.

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[CrossRef]

Nakayama, S.

S. Nakayama, S. Ishida, S. Iwamoto, Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[CrossRef]

Narusawa, S.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

Nemoto, K.

J. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki, “Observation of whispering-gallery modes in Si microdisks at room temperature,” Appl. Phys. Lett. 90(14), 141102 (2007).
[CrossRef]

Ngo, T. P.

O’Brien, D.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

O’Faolain, L.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

Oulton, R.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Pan, D.

Park, H.-G.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

Patrini, M.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Politi, A.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Portalupi, S. L.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

Postigo, P. A.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Priolo, F.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qiang, Z.

Ren, X.

Roelkens, G.

Y. De Koninck, G. Roelkens, R. Baets, “Design of a hybrid III-V-on-silicon microlaser with resonant cavity mirrors,” IEEE Photon. J. 5(2), 2700413 (2013).
[CrossRef]

Ryu, H.-Y.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

Sagnes, I.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Sahin, M.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Sánchez-Dehesa, J.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Sanvitto, D.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Sauvage, S.

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

Seassal, C.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Shakoor, A.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

Shiraki, Y.

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012).
[CrossRef] [PubMed]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

J. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki, “Observation of whispering-gallery modes in Si microdisks at room temperature,” Appl. Phys. Lett. 90(14), 141102 (2007).
[CrossRef]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[CrossRef]

S. Fukatsu, H. Sunamura, Y. Shiraki, S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

Skolnick, M. S.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Soref, R.

R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2(1), 1–6 (2010).
[CrossRef]

Soref, R. A.

Sun, X.

Sunamura, H.

S. Fukatsu, H. Sunamura, Y. Shiraki, S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

Sychugov, I.

I. Sychugov, R. Juhasz, J. Valenta, J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[CrossRef] [PubMed]

Szymanski, D.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Tsuboi, T.

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012).
[CrossRef] [PubMed]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

Usami, N.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012).
[CrossRef] [PubMed]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[CrossRef]

Valenta, J.

I. Sychugov, R. Juhasz, J. Valenta, J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[CrossRef] [PubMed]

Viktorovitch, P.

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Wang, M.

M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
[CrossRef]

Wang, X.

Welna, K.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

Whittaker, D. M.

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

Xia, J.

Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014).
[CrossRef] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

J. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki, “Observation of whispering-gallery modes in Si microdisks at room temperature,” Appl. Phys. Lett. 90(14), 141102 (2007).
[CrossRef]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[CrossRef]

Xiang, W.

T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Xiongwei, H.

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

Xu, J.

M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
[CrossRef]

Xu, X.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012).
[CrossRef] [PubMed]

Yu, J.

Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014).
[CrossRef] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

Yuanda, W.

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

Yue, W.

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

Zeng, C.

Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014).
[CrossRef] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

Zerounian, N.

Zhang, Y.

Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014).
[CrossRef] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

Zhou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (8)

M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998).
[CrossRef]

J. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki, “Observation of whispering-gallery modes in Si microdisks at room temperature,” Appl. Phys. Lett. 90(14), 141102 (2007).
[CrossRef]

S. Nakayama, S. Ishida, S. Iwamoto, Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[CrossRef]

S. Fukatsu, H. Sunamura, Y. Shiraki, S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997).
[CrossRef]

T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000).
[CrossRef]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[CrossRef]

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[CrossRef]

A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[CrossRef]

IEEE Photon. J. (2)

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013).
[CrossRef]

Y. De Koninck, G. Roelkens, R. Baets, “Design of a hybrid III-V-on-silicon microlaser with resonant cavity mirrors,” IEEE Photon. J. 5(2), 2700413 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012).
[CrossRef]

Laser & Photonics Reviews (1)

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013).
[CrossRef]

Opt. Commun. (1)

M. Djavid, F. Monifi, A. Ghaffari, M. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281(15-16), 4028–4032 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Photonics Nanostruct. Fundam. Appl. (1)

P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007).
[CrossRef]

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (1)

I. Sychugov, R. Juhasz, J. Valenta, J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[CrossRef] [PubMed]

Physica B (1)

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

Sens. Actuators A Phys. (1)

T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011).
[CrossRef]

Silicon (1)

R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2(1), 1–6 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) the SEM image of fabricated PCRR embedded with Ge QDs. The excitation spot is shown with a green circle. (b) the magnified micrograph of the corner of the PCRR. The radius r′ of air holes at the corner of the PCRR is reduced by 15 nm. (c) the schematic structure of the device. The red dots represent Ge self-assembled QDs in the top Si/Ge layer. The BOX under the photonic crystal region is removed to form the freestanding structure.

Fig. 2
Fig. 2

(a) the experimental room temperature μPL spectrum of the PCRR, the excitation power is 16 μW. (b) the magnified graph of the experimental PL spectrum for the emission peak 4 of the PCRR.

Fig. 3
Fig. 3

(a) Illustration of the PCRR structure. The radius of the twelve air holes at the corners of the PCRR is reduced. (b) Simulated transmission spectra of photonic crystal with a perfect triangular lattice (black curve) and a PCRR structure (blue curve).

Fig. 4
Fig. 4

the simulated electric field (Ey) profiles of the six resonant modes supported by the PCRR at the plane of z = 0 (the center of the membrane). (a) 1594.58 nm. (b) 1584.10 nm. (c) 1563.54 nm. (d) 1547.76 nm. (e) 1536.02 nm. (f) 1518.05 nm.

Fig. 5
Fig. 5

the simulated far-field emission patterns for the six resonant modes shown in Fig. 4. (a) 1594.58 nm. (b) 1584.10 nm. (c) 1563.54 nm. (d) 1547.76 nm. (e) 1536.02 nm. (f) 1518.05 nm. White concentric circles correspond to θ = 30þ, 45þ, 72þ, 90þ from the inner one to the outer one, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F p = 3 Q eff ( λ c /n) 3 4 π 2 V c
1/ Q eff =1/ Q c +1/ Q e

Metrics