Abstract

We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 105 at 980 nm and 5.7 × 105 at 1550 nm in undoped microrings. In erbium- and ytterbium-doped microrings we observe single-mode 1.5-µm and 1.0-µm laser emission with slope efficiencies of 0.3 and 8.4%, respectively. Their small footprints, tens of microwatts output powers and sub-milliwatt thresholds introduce such rare-earth-doped microlasers as scalable light sources for silicon-based microphotonic devices and systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
    [CrossRef] [PubMed]
  2. M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  3. B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  5. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [CrossRef] [PubMed]
  6. L. Pavesi, “Routes towards silicon-based lasers,” Mater. Today 8(1), 18–25 (2005).
    [CrossRef]
  7. D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [CrossRef]
  8. Z. Fang, Q. Y. Chen, C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
    [CrossRef]
  9. Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989).
    [CrossRef]
  10. T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).
  11. K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
    [CrossRef]
  12. J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
    [CrossRef]
  13. B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
    [CrossRef]
  14. D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16(23), 19221–19231 (2008).
    [CrossRef] [PubMed]
  15. A. Z. Subramani, C. J. Oton, D. P. Shepherd, J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22(21), 1571–1573 (2010).
    [CrossRef]
  16. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
    [CrossRef] [PubMed]
  17. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
    [CrossRef] [PubMed]
  18. E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
    [CrossRef] [PubMed]
  19. J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [CrossRef] [PubMed]
  20. M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013).
    [CrossRef] [PubMed]
  21. E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).
  22. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  23. M. Borselli, T. J. Johnson, O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  24. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
    [CrossRef]
  25. L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
    [CrossRef]
  26. M. Borselli, High-Q Microresonators as Lasing Elements for Silicon Photonics (Ph.D. Thesis, California Institute of Technology, 2006).
  27. T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
    [CrossRef]
  28. E. P. Ostby, L. Yang, K. J. Vahala, “Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007).
    [CrossRef] [PubMed]
  29. H.-S. Hsu, C. Cai, A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express 17(25), 23265–23271 (2009).
    [CrossRef] [PubMed]
  30. S. Mehrabani, A. M. Armani, “Blue upconversion laser based on thulium-doped silica microcavity,” Opt. Lett. 38(21), 4346–4349 (2013).
    [CrossRef] [PubMed]
  31. A. J. Maker, A. M. Armani, “Nanowatt threshold, alumina sensitized neodymium laser integrated on silicon,” Opt. Express 21(22), 27238–27245 (2013).
    [CrossRef] [PubMed]
  32. D. S. Gardner, M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
    [CrossRef]
  33. J. S. Chang, S. C. Eom, G. Y. Sung, J. H. Shin, “On-chip, planar integration of Er doped silicon-rich silicon nitride microdisk with SU-8 waveguide with sub-micron gap control,” Opt. Express 17(25), 22918–22924 (2009).
    [CrossRef] [PubMed]
  34. D. W. Prather, B. Redding, T. Creazzo, E. Marchena, S. Shi, “Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser,” J. Nanosci. Nanotechnol. 10(3), 1643–1649 (2010).
    [CrossRef] [PubMed]
  35. M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23(16), 1166–1168 (2011).
    [CrossRef]
  36. F. F. Lupi, D. Navarro-Urrios, J. Rubio-Garcia, J. Monserrat, C. Dominquez, P. Pellegrino, B. Garrido, “Visible light emitting Si-rich Si3N4μ-disk resonators for sensoristic applications,” J. Lightwave Technol. 30(1), 169–174 (2012).
    [CrossRef]
  37. Purnawirman, E. Shah Hosseini, A. Baldycheva, J. Sun, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Optical Fiber Communication Conference Proceedings, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W4E.5.
  38. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
    [CrossRef]
  39. E. H. Bernhardi, Bragg-Grating-Based Rare-Earth-Ion-Doped Channel Waveguide Lasers and their Applications (Ph.D. Thesis. University of Twente, 2012).
  40. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
    [CrossRef]
  41. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [CrossRef] [PubMed]
  42. L. Yang, K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
    [CrossRef] [PubMed]
  43. L. He, S. K. Özdemir, J. Zhu, L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35(2), 256–258 (2010).
    [CrossRef] [PubMed]
  44. L. He, S. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
    [CrossRef]
  45. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
    [CrossRef]
  46. E. P. Ostby, K. J. Vahala, “Yb-doped glass microcavity laser operation in water,” Opt. Lett. 34(8), 1153–1155 (2009).
    [CrossRef] [PubMed]
  47. L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [CrossRef] [PubMed]

2013 (7)

2012 (1)

2011 (3)

M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23(16), 1166–1168 (2011).
[CrossRef]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[CrossRef] [PubMed]

L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[CrossRef] [PubMed]

2010 (7)

2009 (6)

2008 (1)

2007 (1)

2006 (2)

T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

2005 (6)

M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[CrossRef]

L. Pavesi, “Routes towards silicon-based lasers,” Mater. Today 8(1), 18–25 (2005).
[CrossRef]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[CrossRef]

M. Borselli, T. J. Johnson, O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

D. S. Gardner, M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

2004 (2)

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

L. Yang, K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[CrossRef] [PubMed]

2001 (1)

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

1996 (1)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

1994 (1)

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

1991 (1)

T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).

1989 (1)

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989).
[CrossRef]

Adam, D.

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Adam, T. N.

Adibi, A.

Agazzi, L.

Albert, J.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Atabaki, A. H.

Ay, F.

Ayliffe, P. J.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Balslev, S.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Barton, J. S.

Belt, M.

Bernhardi, E. H.

Bilodeau, F.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

Blauwendraat, T.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

Blumenthal, D. J.

Borselli, M.

Bowers, J. E.

D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Bradley, J.

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Bradley, J. D.

Bradley, J. D. B.

Brongersma, M. L.

D. S. Gardner, M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Byun, H.

Cai, C.

Carmon, T.

L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[CrossRef]

Chang, J. S.

Charlton, M. D. B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Chen, J.

Chen, Q. Y.

Z. Fang, Q. Y. Chen, C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[CrossRef]

Coolbaugh,

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Coolbaugh, D.

Creazzo, T.

D. W. Prather, B. Redding, T. Creazzo, E. Marchena, S. Shi, “Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser,” J. Nanosci. Nanotechnol. 10(3), 1643–1649 (2010).
[CrossRef] [PubMed]

Davenport, M. L.

de Ridder, R. M.

Dominquez, C.

Dyngaard, M.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Eom, S. C.

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Fang, Z.

Z. Fang, Q. Y. Chen, C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[CrossRef]

Fathpour, S.

Feuchter, T.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Gardner, D. S.

D. S. Gardner, M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Garrido, B.

Geskus, D.

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

Ghulinyan, M.

M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23(16), 1166–1168 (2011).
[CrossRef]

Guider, R.

M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23(16), 1166–1168 (2011).
[CrossRef]

Guldberg-Kjaer, S.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Hanawa, F.

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989).
[CrossRef]

Hassan, M. A.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Hattori, K.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

Hattori, M.

T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).

He, L.

L. He, S. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[CrossRef] [PubMed]

L. He, S. K. Özdemir, J. Zhu, L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35(2), 256–258 (2010).
[CrossRef] [PubMed]

Hibino, Y.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989).
[CrossRef]

Hill, K. O.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

Hosseini, E. S.

Hsu, H.-S.

Hübner, J.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Huffman, T.

Ippen, E. P.

Jalali, B.

Jensen, C.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Jihnson, D. C.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

Johnson, T. J.

Kalkman, J.

T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

Kärtner, F. X.

Khan, M. R. H.

Kim, W.

L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Kitagawa, T.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989).
[CrossRef]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Kobayashi, M.

T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Lahoz, F.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Leake, G.

Leake, T. N.

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Li, W.

Liang, D.

D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[CrossRef]

Lupi, F. F.

Maker, A. J.

Malo, B.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

Marchena, E.

D. W. Prather, B. Redding, T. Creazzo, E. Marchena, S. Shi, “Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser,” J. Nanosci. Nanotechnol. 10(3), 1643–1649 (2010).
[CrossRef] [PubMed]

Mehrabani, S.

Min, B.

L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

Monserrat, J.

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Navarro-Urrios, D.

Netti, M. C.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Ohmori, Y.

T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).

Ostby, E. P.

Oton, C. J.

A. Z. Subramani, C. J. Oton, D. P. Shepherd, J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[CrossRef]

Özdemir, S. K.

L. He, S. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[CrossRef] [PubMed]

L. He, S. K. Özdemir, J. Zhu, L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35(2), 256–258 (2010).
[CrossRef] [PubMed]

Painter, O.

Parker, G. J.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Pavesi, L.

M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23(16), 1166–1168 (2011).
[CrossRef]

L. Pavesi, “Routes towards silicon-based lasers,” Mater. Today 8(1), 18–25 (2005).
[CrossRef]

Pellegrino, P.

Perney, N. M. B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Pollnau, M.

Polman, A.

T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Prather, D. W.

D. W. Prather, B. Redding, T. Creazzo, E. Marchena, S. Shi, “Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser,” J. Nanosci. Nanotechnol. 10(3), 1643–1649 (2010).
[CrossRef] [PubMed]

Pucker, G.

M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23(16), 1166–1168 (2011).
[CrossRef]

Pudo, D.

Purnawirman, J.

Purnawirman, J. D. B.

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Redding, B.

D. W. Prather, B. Redding, T. Creazzo, E. Marchena, S. Shi, “Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser,” J. Nanosci. Nanotechnol. 10(3), 1643–1649 (2010).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Roeloffzen, C. G. H.

Rubio-Garcia, J.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Shah Hosseini, E.

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[CrossRef] [PubMed]

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Shen, Y.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Shepherd, D. P.

A. Z. Subramani, C. J. Oton, D. P. Shepherd, J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[CrossRef]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Shi, S.

D. W. Prather, B. Redding, T. Creazzo, E. Marchena, S. Shi, “Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser,” J. Nanosci. Nanotechnol. 10(3), 1643–1649 (2010).
[CrossRef] [PubMed]

Shimizu, M.

T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989).
[CrossRef]

Shin, J. H.

Sickler, J.

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Soltani, M.

Spillane, S. M.

L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Stoffer, R.

Subramani, A. Z.

A. Z. Subramani, C. J. Oton, D. P. Shepherd, J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[CrossRef]

Sugita, A.

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989).
[CrossRef]

Sun, G.

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Sun, J.

Sung, G. Y.

Tai, C.-Y.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Thériault, S.

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

Thomsen, C. L.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

Unal, B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Vahala, K. J.

E. P. Ostby, K. J. Vahala, “Yb-doped glass microcavity laser operation in water,” Opt. Lett. 34(8), 1153–1155 (2009).
[CrossRef] [PubMed]

E. P. Ostby, L. Yang, K. J. Vahala, “Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007).
[CrossRef] [PubMed]

T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

L. Yang, K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[CrossRef] [PubMed]

van Dam, C.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

van Uffelen, J. W. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

van Wolferen, H. A. G. M.

Watts, M. R.

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[CrossRef] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Wilkinson, J. S.

A. Z. Subramani, C. J. Oton, D. P. Shepherd, J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[CrossRef]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

Wörhoff, K.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Yang, L.

L. He, S. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[CrossRef] [PubMed]

L. He, S. K. Özdemir, J. Zhu, L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35(2), 256–258 (2010).
[CrossRef] [PubMed]

E. P. Ostby, L. Yang, K. J. Vahala, “Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007).
[CrossRef] [PubMed]

L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[CrossRef]

L. Yang, K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[CrossRef] [PubMed]

Yegnanarayanan, S.

Zauner, D.

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Zhao, C. Z.

Z. Fang, Q. Y. Chen, C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[CrossRef]

Zhu, J.

L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[CrossRef] [PubMed]

L. He, S. K. Özdemir, J. Zhu, L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35(2), 256–258 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (1)

J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[CrossRef]

L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Electron. Lett. (1)

K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23(16), 1166–1168 (2011).
[CrossRef]

A. Z. Subramani, C. J. Oton, D. P. Shepherd, J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[CrossRef]

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989).
[CrossRef]

T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).

J. Lightwave Technol. (3)

J. Nanosci. Nanotechnol. (1)

D. W. Prather, B. Redding, T. Creazzo, E. Marchena, S. Shi, “Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser,” J. Nanosci. Nanotechnol. 10(3), 1643–1649 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

L. He, S. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013).
[CrossRef]

Mater. Today (1)

L. Pavesi, “Routes towards silicon-based lasers,” Mater. Today 8(1), 18–25 (2005).
[CrossRef]

Nat. Nanotechnol. (1)

L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Nature (4)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[CrossRef] [PubMed]

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Laser Technol. (1)

Z. Fang, Q. Y. Chen, C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[CrossRef]

Opt. Lett. (10)

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[CrossRef] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[CrossRef] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[CrossRef] [PubMed]

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[CrossRef] [PubMed]

M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013).
[CrossRef] [PubMed]

S. Mehrabani, A. M. Armani, “Blue upconversion laser based on thulium-doped silica microcavity,” Opt. Lett. 38(21), 4346–4349 (2013).
[CrossRef] [PubMed]

E. P. Ostby, L. Yang, K. J. Vahala, “Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007).
[CrossRef] [PubMed]

L. Yang, K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[CrossRef] [PubMed]

L. He, S. K. Özdemir, J. Zhu, L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35(2), 256–258 (2010).
[CrossRef] [PubMed]

E. P. Ostby, K. J. Vahala, “Yb-doped glass microcavity laser operation in water,” Opt. Lett. 34(8), 1153–1155 (2009).
[CrossRef] [PubMed]

Opt. Mater. (1)

D. S. Gardner, M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Phys. Rev. A (1)

T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

Other (4)

M. Borselli, High-Q Microresonators as Lasing Elements for Silicon Photonics (Ph.D. Thesis, California Institute of Technology, 2006).

Purnawirman, E. Shah Hosseini, A. Baldycheva, J. Sun, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Optical Fiber Communication Conference Proceedings, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W4E.5.

E. H. Bernhardi, Bragg-Grating-Based Rare-Earth-Ion-Doped Channel Waveguide Lasers and their Applications (Ph.D. Thesis. University of Twente, 2012).

E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Silicon-compatible microring laser fabrication steps: (i) deposition of the SiO2 bottom-cladding layer on a silicon substrate; (ii) deposition of the lower SiNx layer; (iii) patterning of the SiNx rings and bottom part of SiNx bus waveguide (at far right) followed by SiO2 encapsulation; (iv) deposition of the upper SiNx layer; (v) patterning and SiO2 encapsulation of the upper SiNx layer to define the trench etch stop and top part of the SiNx bus waveguide; (vi) microring trench etch and removal of SiNx etch stop; (vii) deposition of the Al2O3:RE3+ gain medium into the trench. (b) Illustration of the resulting monolithic rare-earth-doped microring laser structure.

Fig. 2
Fig. 2

(a) Top-view optical microscope image of an on-chip rare-earth-doped microlaser showing the integrated microring resonator and SiNx bus waveguide; (b) scanning electron micrograph (SEM) image of the Al2O3:RE3+-filled trench on top of the silicon chip; (c) SEM cross-section image of the edge of the SiNx and Al2O3:RE3+ microring resonator; (d) close-up view of the coupling region (indicated by the red box in (c)), showing the SiNx bus waveguide, waveguide width, w, and microring-waveguide gap, g.

Fig. 3
Fig. 3

980-nm pump coupling in undoped microrings with w = 0.4 µm and microring-waveguide gaps ranging from 0.1 to 1.0 µm. Maximum coupling for both TE and TM polarizations occurs at gaps near 0.5 µm, where the internal and external quality factors of the resonator are matched.

Fig. 4
Fig. 4

980-nm transmission measurements in an undoped microring with w = 0.4 µm and g = 0.7 µm. The top plots were measured over a scan range of 4 nm (10 pm step size) and show coupling to multiple TE-like (left) and TM-like (right) resonances. The optimal calculated Er- and Yb-doped microring pump modes (TE1 and TM1) are shown in the insets and their resonances indicated on the plots. Bottom: high resolution (1 pm step size) scans of single TE1 (left) and TM1 (right) resonances. By fitting the data using a Lorentzian function we determined internal quality factors, Qi, of 3.8 × 105 and 2.7 × 105.

Fig. 5
Fig. 5

1550-nm transmission measurements in an undoped microring with w = 0.9 µm and g = 1.0 µm. The top plots were measured over a scan range of 4 nm (1 pm step size) and show coupling to multiple TE-like (left) and TM-like (right) modes. The calculated optimum 1550-nm Er-doped microring laser modes (TE1 and TM1) are shown in the insets and their corresponding resonances in the undoped microrings indicated on the plots. Bottom: high resolution (0.1 pm step size) scans of single TE1 (left) and TM1 (right) resonances. By fitting the data using a Lorentzian function we determined internal quality factors, Qi, of 5.7 × 105 and 4.2 × 105 for the 1550 nm TE-like and TM-like modes, respectively.

Fig. 6
Fig. 6

Top-view of an Er-doped microring laser injected with 980-nm pump light, showing the characteristic spontaneous green-light emission from excited Er3+ ions.

Fig. 7
Fig. 7

Emission spectrum of an Er-doped microring laser with NEr,peak = 3 × 1020 cm-3 and g = 0.3 µm and pumped using a laser diode centered at 976 nm. The output is single-mode at 1559.82 nm with a side-mode suppression of > 30 dB.

Fig. 8
Fig. 8

Output power vs. on-chip 978.84-nm pump power for an Er-doped microring laser with NEr,peak = 2 × 1020 cm-3 and g = 0.5 µm. The laser threshold is 0.5 mW and the double-sided slope efficiency is 0.3%.

Fig. 9
Fig. 9

Emission spectrum of an Yb-doped microring laser with g = 0.4 µm and under resonant pumping at 970.96 nm. The output is single-mode at 1042.74 nm with a side-mode suppression of > 40 dB (inset).

Fig. 10
Fig. 10

Output power vs. on-chip 970.96-nm pump power for an Yb-doped microring laser with g = 0.4 µm. The laser emits > 100 µW power into the integrated SiNx waveguide, with a lasing threshold of 0.7 mW and double-sided slope efficiency of 8.4%.

Metrics