Abstract

We numerically investigate self-defocusing solitons in a lithium niobate (LN) waveguide designed to have a large refractive index (RI) change. The waveguide evokes strong waveguide dispersion and all-normal dispersion is found in the entire guiding band spanning the near-IR and the beginning of the mid-IR. Meanwhile, a self-defocusing nonlinearity is invoked by the cascaded (phase-mismatched) second-harmonic generation under a quasi-phase-matching pitch. Combining this with the all-normal dispersion, mid-IR solitons can form and the waveguide presents the first all-nonlinear and solitonic device where no linear dispersion (i.e. non-solitonic) regimes exist within the guiding band. Soliton compressions at 2 μm and 3 μm are investigated, with nano-joule single cycle pulse formations and highly coherent octave-spanning supercontinuum generations. With an alternative design on the waveguide dispersion, the soliton spectral tunneling effect is also investigated, with which few-cycle pico-joule pulses at 2 μm are formed by a near-IR pump.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [CrossRef]
  2. S. Ashihara, J. Nishina, T. Shimura, K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
    [CrossRef]
  3. J. Moses, F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
    [CrossRef] [PubMed]
  4. B. B. Zhou, A. Chong, F. W. Wise, M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
    [CrossRef] [PubMed]
  5. R. DeSalvo, H. Vanherzeele, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. V. Stryland, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [CrossRef] [PubMed]
  6. M. L. Sundheimer, J. D. Bierlein, C. Bosshard, E. W. V. Stryland, G. I. Stegeman, “Large nonlinear phase modulation in quasi-phase-matched KTP waveguides as a result of cascaded second-order processes,” Opt. Lett. 18, 1397–1399 (1993).
    [CrossRef] [PubMed]
  7. G. I. Stegeman, M. Sheik-Bahae, E. V. Stryland, G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
    [CrossRef] [PubMed]
  8. C. R. Menyuk, R. Schiek, L. Torner, “Solitary waves due to χ(2): χ(2) cascading,” J. Opt. Soc. Am. B 11, 2434–2443 (1994).
    [CrossRef]
  9. C. Langrock, S. Kumar, J. McGeehan, A. Willner, M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
    [CrossRef]
  10. R. Schiek, H. Seibert, W. Sohler, M. L. Sundheimer, D. Y. Kim, Y. Baek, G. I. Stegeman, “Direct measurement of cascaded nonlinearity in lithium niobate channel waveguides,” Opt. Lett. 19, 1949–1951 (1994).
    [CrossRef] [PubMed]
  11. R. Schiek, Y. Baek, G. I. Stegeman, “Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B 15, 2255–2268 (1998).
    [CrossRef]
  12. M. L. Bortz, M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
    [CrossRef] [PubMed]
  13. K. Gallo, J. Prawiharjo, N. Broderick, D. Richardson, “Proton-exchanged LiNbO3 waveguides for photonic applications,” in Proceedings of 6th International Conference on Transparent Optical Networks (2004), 1, 277–281.
  14. H. Guo, X. Zeng, B. Zhou, M. Bache, “Few-cycle solitons and supercontinuum generation with cascaded quadratic nonlinearities in unpoled lithium niobate ridge waveguides,” Opt. Lett. 39, 1105–1108 (2014).
    [CrossRef] [PubMed]
  15. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
    [CrossRef] [PubMed]
  16. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
    [CrossRef] [PubMed]
  17. C. Langrock, M. M. Fejer, I. Hartl, M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
    [CrossRef] [PubMed]
  18. M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
    [CrossRef]
  19. D. V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [CrossRef]
  20. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
    [CrossRef]
  21. P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
    [CrossRef] [PubMed]
  22. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.
  23. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
    [CrossRef]
  24. H. Guo, X. Zeng, M. Bache, “Generalized nonlinear Wwave equation in frequency domain,” arXiv:1301.1473 (2013).
  25. M. Bache, “Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses,” J. Opt. Soc. Am. B 26, 460–470 (2009).
    [CrossRef]
  26. M. Bache, O. Bang, J. Moses, F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
    [CrossRef] [PubMed]
  27. H. Guo, X. Zeng, B. Zhou, M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
    [CrossRef]
  28. M. Bache, R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721 (2012).
  29. V. N. Serkin, T. L. Belyaeva, G. H. Corro, M. A. Granados, “Stimulated raman self-scattering of femtosecond pulses. I. soliton and non-soliton regimes of coherent self-scattering,” Quantum Electron. 33, 325 (2003).
    [CrossRef]
  30. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  31. V. Serkin, V. Vysloukh, J. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
    [CrossRef]
  32. M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, “Optical cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses,” Opt. Express 19, 22557–22562 (2011).
    [CrossRef] [PubMed]
  33. N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [CrossRef] [PubMed]
  34. D. V. Skryabin, F. Luan, J. C. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  35. H. Guo, S. Wang, X. Zeng, M. Bache, “Understanding soliton spectral tunneling as a spectral coupling effect,” IEEE Photon. Technol. Lett. 25, 1928–1931 (2013).
    [CrossRef]
  36. M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
    [CrossRef]

2014 (1)

2013 (4)

2012 (1)

B. B. Zhou, A. Chong, F. W. Wise, M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (3)

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

D. V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
[CrossRef]

2009 (1)

2007 (2)

2006 (4)

C. Langrock, S. Kumar, J. McGeehan, A. Willner, M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
[CrossRef]

J. Moses, F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
[CrossRef] [PubMed]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2003 (2)

D. V. Skryabin, F. Luan, J. C. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

V. N. Serkin, T. L. Belyaeva, G. H. Corro, M. A. Granados, “Stimulated raman self-scattering of femtosecond pulses. I. soliton and non-soliton regimes of coherent self-scattering,” Quantum Electron. 33, 325 (2003).
[CrossRef]

2002 (1)

1998 (1)

1995 (1)

N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

1994 (2)

1993 (3)

1992 (1)

1991 (1)

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Akhmediev, N.

N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Ashihara, S.

Asobe, M.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Assanto, G.

Bache, M.

H. Guo, X. Zeng, B. Zhou, M. Bache, “Few-cycle solitons and supercontinuum generation with cascaded quadratic nonlinearities in unpoled lithium niobate ridge waveguides,” Opt. Lett. 39, 1105–1108 (2014).
[CrossRef] [PubMed]

M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 1647–1657 (2013).
[CrossRef]

H. Guo, S. Wang, X. Zeng, M. Bache, “Understanding soliton spectral tunneling as a spectral coupling effect,” IEEE Photon. Technol. Lett. 25, 1928–1931 (2013).
[CrossRef]

H. Guo, X. Zeng, B. Zhou, M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494–504 (2013).
[CrossRef]

B. B. Zhou, A. Chong, F. W. Wise, M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, “Optical cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses,” Opt. Express 19, 22557–22562 (2011).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

M. Bache, “Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses,” J. Opt. Soc. Am. B 26, 460–470 (2009).
[CrossRef]

M. Bache, O. Bang, J. Moses, F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
[CrossRef] [PubMed]

H. Guo, X. Zeng, M. Bache, “Generalized nonlinear Wwave equation in frequency domain,” arXiv:1301.1473 (2013).

M. Bache, R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721 (2012).

Baek, Y.

Bang, O.

Bass, M.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

Belyaeva, T. L.

V. N. Serkin, T. L. Belyaeva, G. H. Corro, M. A. Granados, “Stimulated raman self-scattering of femtosecond pulses. I. soliton and non-soliton regimes of coherent self-scattering,” Quantum Electron. 33, 325 (2003).
[CrossRef]

Bierlein, J. D.

Bortz, M. L.

Bosshard, C.

Broderick, N.

K. Gallo, J. Prawiharjo, N. Broderick, D. Richardson, “Proton-exchanged LiNbO3 waveguides for photonic applications,” in Proceedings of 6th International Conference on Transparent Optical Networks (2004), 1, 277–281.

Chiles, J.

Chong, A.

B. B. Zhou, A. Chong, F. W. Wise, M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Corro, G. H.

V. N. Serkin, T. L. Belyaeva, G. H. Corro, M. A. Granados, “Stimulated raman self-scattering of femtosecond pulses. I. soliton and non-soliton regimes of coherent self-scattering,” Quantum Electron. 33, 325 (2003).
[CrossRef]

DeCusatis, C.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

DeSalvo, R.

Dudley, J. M.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Enoch, J.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

Fathpour, S.

Fejer, M.

Fejer, M. M.

Fermann, M. E.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Gallo, K.

K. Gallo, J. Prawiharjo, N. Broderick, D. Richardson, “Proton-exchanged LiNbO3 waveguides for photonic applications,” in Proceedings of 6th International Conference on Transparent Optical Networks (2004), 1, 277–281.

Genty, G.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Gorbach, A. V.

D. V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

Granados, M. A.

V. N. Serkin, T. L. Belyaeva, G. H. Corro, M. A. Granados, “Stimulated raman self-scattering of femtosecond pulses. I. soliton and non-soliton regimes of coherent self-scattering,” Quantum Electron. 33, 325 (2003).
[CrossRef]

Guo, H.

Hagan, D. J.

Hartl, I.

Heidt, A. M.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Jiang, J.

Karlsson, M.

N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Khan, S.

Kim, D. Y.

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Kumar, S.

Kuroda, K.

Lakshminarayanan, V.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

Langrock, C.

Li, G.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Ma, J.

MacDonald, C.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

Magari, K.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Mahajan, V.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

McGeehan, J.

Menyuk, C. R.

Miyazawa, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Moses, J.

Nishida, Y.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Nishina, J.

Pelc, J. S.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Phillips, C. R.

Prawiharjo, J.

K. Gallo, J. Prawiharjo, N. Broderick, D. Richardson, “Proton-exchanged LiNbO3 waveguides for photonic applications,” in Proceedings of 6th International Conference on Transparent Optical Networks (2004), 1, 277–281.

Rabiei, P.

Richardson, D.

K. Gallo, J. Prawiharjo, N. Broderick, D. Richardson, “Proton-exchanged LiNbO3 waveguides for photonic applications,” in Proceedings of 6th International Conference on Transparent Optical Networks (2004), 1, 277–281.

Russell, P. S. J.

D. V. Skryabin, F. Luan, J. C. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Schiek, R.

Seibert, H.

Serkin, V.

V. Serkin, V. Vysloukh, J. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
[CrossRef]

Serkin, V. N.

V. N. Serkin, T. L. Belyaeva, G. H. Corro, M. A. Granados, “Stimulated raman self-scattering of femtosecond pulses. I. soliton and non-soliton regimes of coherent self-scattering,” Quantum Electron. 33, 325 (2003).
[CrossRef]

Sheik-Bahae, M.

Shimura, T.

Skryabin, D. V.

D. V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Sohler, W.

Stegeman, G.

Stegeman, G. I.

Stryland, E. V.

Stryland, E. W. V.

Sundheimer, M. L.

Suzuki, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Tadanaga, O.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Taylor, J.

V. Serkin, V. Vysloukh, J. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
[CrossRef]

Torner, L.

Van Stryland, E.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

Vanherzeele, H.

Vysloukh, V.

V. Serkin, V. Vysloukh, J. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
[CrossRef]

Wang, S.

H. Guo, S. Wang, X. Zeng, M. Bache, “Understanding soliton spectral tunneling as a spectral coupling effect,” IEEE Photon. Technol. Lett. 25, 1928–1931 (2013).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Willner, A.

Wise, F. W.

Yanagawa, T.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Zeng, X.

Zhou, B.

Zhou, B. B.

B. B. Zhou, A. Chong, F. W. Wise, M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, “Optical cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses,” Opt. Express 19, 22557–22562 (2011).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Electron. Lett. (1)

V. Serkin, V. Vysloukh, J. Taylor, “Soliton spectral tunnelling effect,” Electron. Lett. 29, 12–13 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Guo, S. Wang, X. Zeng, M. Bache, “Understanding soliton spectral tunneling as a spectral coupling effect,” IEEE Photon. Technol. Lett. 25, 1928–1931 (2013).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (6)

Opt. Express (3)

Opt. Lett. (10)

C. Langrock, M. M. Fejer, I. Hartl, M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
[CrossRef] [PubMed]

M. L. Bortz, M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

H. Guo, X. Zeng, B. Zhou, M. Bache, “Few-cycle solitons and supercontinuum generation with cascaded quadratic nonlinearities in unpoled lithium niobate ridge waveguides,” Opt. Lett. 39, 1105–1108 (2014).
[CrossRef] [PubMed]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
[CrossRef] [PubMed]

J. Moses, F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006).
[CrossRef] [PubMed]

R. DeSalvo, H. Vanherzeele, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. V. Stryland, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[CrossRef] [PubMed]

M. L. Sundheimer, J. D. Bierlein, C. Bosshard, E. W. V. Stryland, G. I. Stegeman, “Large nonlinear phase modulation in quasi-phase-matched KTP waveguides as a result of cascaded second-order processes,” Opt. Lett. 18, 1397–1399 (1993).
[CrossRef] [PubMed]

G. I. Stegeman, M. Sheik-Bahae, E. V. Stryland, G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
[CrossRef] [PubMed]

R. Schiek, H. Seibert, W. Sohler, M. L. Sundheimer, D. Y. Kim, Y. Baek, G. I. Stegeman, “Direct measurement of cascaded nonlinearity in lithium niobate channel waveguides,” Opt. Lett. 19, 1949–1951 (1994).
[CrossRef] [PubMed]

M. Bache, O. Bang, J. Moses, F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. A (2)

N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

B. B. Zhou, A. Chong, F. W. Wise, M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[CrossRef] [PubMed]

Quantum Electron. (1)

V. N. Serkin, T. L. Belyaeva, G. H. Corro, M. A. Granados, “Stimulated raman self-scattering of femtosecond pulses. I. soliton and non-soliton regimes of coherent self-scattering,” Quantum Electron. 33, 325 (2003).
[CrossRef]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

D. V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Other (4)

M. Bache, R. Schiek, “Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response,” arXiv:1211.1721 (2012).

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, Handbook of Optics, Vol. IV of Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), 3 (McGraw-Hill Education, 2009), Chap. 2.

H. Guo, X. Zeng, M. Bache, “Generalized nonlinear Wwave equation in frequency domain,” arXiv:1301.1473 (2013).

K. Gallo, J. Prawiharjo, N. Broderick, D. Richardson, “Proton-exchanged LiNbO3 waveguides for photonic applications,” in Proceedings of 6th International Conference on Transparent Optical Networks (2004), 1, 277–281.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) waveguide structure and mode field distributions of eigen-modes, at different wavelengths; (b) mode effective RIs; Waveguide has wd = 4 μm, dp = 2 μm.

Fig. 2
Fig. 2

dispersion tailored by tuning the core size; (a) TM00 mode effective RI profiles and (b, c) GVD profiles with different core sizes.

Fig. 3
Fig. 3

(a) mode overlap integrals in SHG processes; (b) mode overlap integrals in self/cross phase modulations; (c) phase mismatch limits for overall self-defocusing nonlinearity and for clean soliton compressions; (d) nonlinear factors of both the cascaded quadratic nonlinearity and the Kerr nonlinearity. Waveguide core width is 4 μm and the height is 2 μm.

Fig. 4
Fig. 4

numerical simulation of self-defocusing soliton compression at 2 μm in the LN waveguide; wd = 4 μm, dp = 2 μm, Λ = 8.5 μm, γcasc,TM00 = −0.169 m−1W−1, γKerr,TM00 = 0.097 m−1W−1, k TM 00 ( 2 ) = 0.151 fs 2 / μ m; pump pulse has FWHM = 100 fs, energy 0.6 nJ, soliton order is Neff ≈ 3; modes taken into account are TM00, TM20, TM40, TM60 and TM01; (a) spectra of the input pulse (TM00 mode), the compressed pulse (TM00 mode) and the output pulse (all modes); The spectrum is scaled in pulse spectrum density (PSD) which has the unit of dBm/nm; (b) pulse spectral evolution (TM00 mode) with the first compression stage marked by the dash line; (c) TM00 mode electric field amplitude at the first compression stage; (d) pulse temporal evolution (TM00 mode); (e) pulse spectrogram evolution; (f) high-order mode SH radiations corresponding to phase matching positions.

Fig. 5
Fig. 5

numerical simulation of self-defocusing soliton compression at 1.41 μm in the LN waveguide; waveguide has the same structure as Fig. 4; pump pulse has FWHM = 50 fs, energy 0.2 nJ, soliton order is Neff ≈ 1.5; (a) TM00 mode spectra of the input pulse, the compressed pulse and the output pulse; (b) pulse spectral evolution (TM00 mode) with the first compression stage marked by the dash line; (c) TM00 mode electric field amplitude at the first compression stage; (d) pulse temporal evolution; insert: pulse spectrogram at the first compression stage.

Fig. 6
Fig. 6

numerical simulation of self-defocusing soliton compression at 1.58 μm in the LN waveguide; waveguide has the same structure as Fig. 4; pump pulse has FWHM = 50 fs, energy 0.5 nJ, soliton order is Neff ≈ 4; (a) TM00 mode spectra of the input pulse, the compressed pulse and the output pulse; (b) pulse spectral evolution (TM00 mode) with the first compression stage marked by the dash line; (c) TM00 mode electric field amplitude at the first compression stage; (d) pulse temporal evolution; insert: pulse spectrogram at the first compression stage.

Fig. 7
Fig. 7

numerical simulation of self-defocusing soliton compression at 3 μm in the LN waveguide; wd = 5 μm, dp = 2.5 μm, Λ = 10 μm, γcasc,TM00 = −0.063 m−1W−1, γKerr,TM00 = 0.030 m−1W−1, k TM 00 ( 2 ) = 0.531 fs 2 / μ m; pump pulse has FWHM = 100 fs, energy 1.2 nJ, soliton order is Neff ≈ 1.5; (a) TM00 mode spectra of the input pulse, the compressed pulse and the output pulse; (b) pulse spectral evolution (TM00 mode) with the first compression stage marked by the dash line; (c) TM00 mode electric field amplitude at the first compression stage; (d) pulse temporal evolution (TM00 mode); insert: pulse spectrogram at the first compression stage.

Fig. 8
Fig. 8

coherence spectra for the output pulse spectrum in both the (a) 2-μm and (b) 3-μm compressions.

Fig. 9
Fig. 9

broadband DW generation at 2.2 μm in the LN waveguide when pumping at 1.35 μm; wd = 5 μm, dp = 2.5 μm, Λ = 9.8 μm, γcasc,TM00 = −0.217 m−1W−1, γKerr,TM00 = 0.152 m−1W−1, k TM 00 ( 2 ) = 0.049 fs 2 / μ m; pump pulse has FWHM = 25 fs, energy 0.1 nJ, soliton order is Neff ≈ 1; (a) pulse spectrogram evolution with slices at different propagation distance; (b) spectral evolution (TM00 mode); dash-dot lines mark the two ZDWs; (d) temporal evolution (TM00 mode); insert: DW pulse spectrum and temporal shape.

Fig. 10
Fig. 10

soliton spectral tunneling effect with the pump at 1.31 μm and the DW pulse generated at 2.6 μm which is also solitonary; wd = 5 μm, dp = 2.5 μm, Λ = 9.8 μm, γcasc,TM00 = −0.204 m−1W−1, γKerr,TM00 = 0.159 m−1W−1, k TM 00 ( 2 ) = 0.063 fs 2 / μ m; pump pulse has FWHM = 25 fs, energy 0.175 nJ, soliton order is Neff ≈ 1; (a) pulse spectrogram evolution with slices at different propagation distance; dash-dot lines mark the two ZDWs; (b) spectral evolution (TM00 mode); (d) temporal evolution (TM00 mode).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

𝒫 j ( 2 ) ( ω ) = ε 0 α 1 α 2 Θ ¯ j ; α 1 α 2 ( 2 ) [ A α 1 A α 2 ]
𝒫 j ( 3 ) ( ω ) = ε 0 α 1 α 2 α 3 Θ ¯ j ; α 1 α 2 α 3 ( 3 ) [ ( 1 f R ) A α 1 A α 2 A α 3 + f R A α 1 1 [ h ˜ R [ A α 2 A α 3 ] ] ]
θ j ; α 1 α 2 ( 2 ) ( ω 1 + ω 2 ) = core d x d y B ˜ j * ( x , y , ω 1 + ω 2 ) B ˜ α 1 ( x , y , ω 1 ) B ˜ α 2 ( x , y , ω 2 )
θ j ; α 1 α 2 α 3 ( 3 ) ( n ω n ) = core d x d y B ˜ j * ( x , y , n ω n ) B ˜ α 1 ( x , y , ω 1 ) B ˜ α 2 ( x , y , ω 2 ) B ˜ α 3 ( x , y , ω 3 )
A ˜ j z + α A ˜ j + i k j ( ω ) A ˜ j = i ω 2 μ 0 2 k j ( ω ) ( 𝒫 j ( 2 ) ( ω ) + 𝒫 j ( 3 ) ( ω ) )
n SH , j ( λ SH ) = n FW , TM 00 ( 2 λ SH ) + Δ n QPM ( λ SH )
g ˜ 12 ( 1 ) ( ω ) = | A ˜ s * ( ω ) A ˜ l ( ω ) | | A ˜ s ( ω ) | 2 | A ˜ l ( ω ) | 2 , s l

Metrics