Abstract

We study the incubation effect during laser ablation of stainless steel with ultrashort pulses to boost the material removal efficiency at high repetition rates. The multi-shot ablation threshold fluence has been estimated for two pulse durations, 650-fs and 10-ps, in a range of repetition rates from 50kHz to 1 MHz. Our results show that the threshold fluence decreases with the number of laser pulses N due to damage accumulation mechanisms, as expected. Moreover, approaching the MHz regime, the onset of heat accumulation enhances the incubation effect, which is in turn lower for shorter pulses at repetition rates below 600 kHz. A saturation of the threshold fluence value is shown to occur for a significantly high number of pulses, and well fitted by a modified incubation model.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
    [CrossRef]
  2. J. Schille, U. Loeschner, R. Ebert, P. Scully, N. Goddard, and H. Exner, “Laser micro processing using a high repetition rate femtosecond laser,” in Proceedings of 29th International Congress on Application of Laser & Electro-Optics,(Anaheim, CA, USA, 2010), paper #189, pp.1491–1499.
  3. B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
    [CrossRef]
  4. G. Račiukaitis, M. Brikas, P. Gečys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
    [CrossRef]
  5. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [CrossRef] [PubMed]
  6. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
    [CrossRef] [PubMed]
  7. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
    [CrossRef]
  8. G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009).
    [CrossRef]
  9. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
    [CrossRef]
  10. D. Gómez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
    [CrossRef]
  11. X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
    [CrossRef]
  12. B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
    [CrossRef]
  13. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
    [CrossRef]
  14. J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
    [CrossRef]
  15. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  16. D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
    [CrossRef]

2013 (1)

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

2012 (2)

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

2009 (2)

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009).
[CrossRef]

2008 (2)

G. Račiukaitis, M. Brikas, P. Gečys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[CrossRef]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

2006 (2)

D. Gómez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
[CrossRef]

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

2004 (1)

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

2003 (1)

D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
[CrossRef]

1999 (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

1988 (1)

Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
[CrossRef]

1982 (1)

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
[CrossRef] [PubMed]

Ancona, A.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Bandi, T.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

Becker, M. F.

Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
[CrossRef]

Brikas, M.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009).
[CrossRef]

G. Račiukaitis, M. Brikas, P. Gečys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[CrossRef]

Chai, L.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Coyne, E.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Dommann, A.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

Döring, S.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

Foss, S. E.

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[CrossRef]

Gecys, P.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009).
[CrossRef]

G. Račiukaitis, M. Brikas, P. Gečys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[CrossRef]

Gedvilas, M.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009).
[CrossRef]

G. Račiukaitis, M. Brikas, P. Gečys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[CrossRef]

Glynn, T. J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Goenaga, I.

D. Gómez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
[CrossRef]

Gómez, D.

D. Gómez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
[CrossRef]

Hennig, G.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

Hunziker, U.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
[CrossRef]

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
[CrossRef]

Jauregui, C.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

Jee, Y.

Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
[CrossRef]

Jia, W.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Lewis, L. J.

D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
[CrossRef]

Li, J.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Limpert, J.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Liu, J. M.

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
[CrossRef] [PubMed]

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Magee, J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Mannion, P. T.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Martin, P. E.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

Muralt, M.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
[CrossRef]

Neels, A.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
[CrossRef]

Ni, X.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Nolte, S.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

O’Connor, G. M.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Perez, D.

D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
[CrossRef]

Raciukaitis, G.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009).
[CrossRef]

G. Račiukaitis, M. Brikas, P. Gečys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[CrossRef]

Rademaker, K.

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Röser, F.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Rouffiange, V.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

Schmid, M.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
[CrossRef]

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Thorstensen, J.

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[CrossRef]

Tünnermann, A.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Voisiat, B.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009).
[CrossRef]

Walser, R. M.

Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
[CrossRef]

Wang, C.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Yang, L.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Zhang, R.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Zhang, Z.

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

Zuercher, J.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
[CrossRef]

Appl. Surf. Sci. (4)

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

D. Gómez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
[CrossRef]

X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[CrossRef]

J. Laser Micro Nanoen. (1)

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
[CrossRef]

Opt. Express (1)

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
[CrossRef] [PubMed]

Phys. Rev. B (1)

D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
[CrossRef]

Proc. SPIE (3)

G. Račiukaitis, M. Brikas, P. Gečys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[CrossRef]

Other (2)

J. Schille, U. Loeschner, R. Ebert, P. Scully, N. Goddard, and H. Exner, “Laser micro processing using a high repetition rate femtosecond laser,” in Proceedings of 29th International Congress on Application of Laser & Electro-Optics,(Anaheim, CA, USA, 2010), paper #189, pp.1491–1499.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic layout of experimental setup. AOM: acousto-optic modulator. QWP: quarter-wave-plate.

Fig. 2
Fig. 2

SEM images of craters ablated with bursts of N pulses at 50 kHz repetition rate, 650-fs pulse width and (a) N = 25 and Ep = 1 μJ, (b) N = 250 and Ep = 1 μJ, (c) N = 25 and Ep = 30 μJ.

Fig. 3
Fig. 3

The squared diameter of the ablated craters in stainless steel (AISI 304) versus pulse energy for N = 5, 50, 500, 25.000 at 1MHz and pulse width of (a) 650fs and (b) 10ps. Insets show SEM images of two craters exhibiting different morphology and produced at N = 25.000 shots, 650fs pulse width, 1MHz repetition rate and pulse energies of 1µJ and 10µJ, respectively.

Fig. 4
Fig. 4

Multi-shot threshold fluence as a function of repetition rate at 2500 incident pulses in stainless steel (AISI 304) sample for pulse width of 650fs (square solid) and 10 ps (solid circle)

Fig. 5
Fig. 5

Multi-shot threshold fluence versus the number of applied laser pulses in stainless steel (AISI 304) sample at two pulse widths of 650fs and 10ps at (a) 50kHz; (b) 1MHz.

Fig. 6
Fig. 6

Fits of the experimentally measured multi-shot threshold fluence versus the number of applied laser pulses with the standard incubation models of Eq. (3) (dashed line) and modified model of Eq. (4) (solid line): (a) 100 kHz repetition rate, 650 fs pulse duration; (b) 100 kHz, 10 ps; (c) 1 MHz, 650 fs; (d) 1 MHz, 10 ps.

Fig. 7
Fig. 7

Incubation coefficient S as a function of the repetition rate for multi-pulse laser ablation of stainless steel (AISI304) targets with 650-fs and 10-ps laser pulse width.

Fig. 8
Fig. 8

Multi-shot threshold fluence with an infinite number of pulses as a function of the repetition rate measured during laser ablation of stainless steel (AISI304) targets with (a) 650-fs and (b) 10-ps pulse widths.

Tables (1)

Tables Icon

Table 1 Operating parameter

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D 2 =2w l 2 n( Φ 0 Φ th,N )
Φ 0 = 2 E p π w 2
Φ th,N = Φ th,1 N S1
Φ th,N = Φ th, +Δ Φ th,1 N S * 1

Metrics