Abstract

Abstract: Optical properties of single gold nanodiscs were studied by scanning near-field optical microscopy. Near-field transmission spectra of a single nanodisc exhibited multiple plasmon resonances in the visible to near-infrared region. Near-field transmission images observed at these resonance wavelengths show wavy spatial features depending on the wavelength of observation. To clarify physical pictures of the images, theoretical simulations based on spatial correlation between electromagnetic fundamental modes inside and outside of the disc were performed. Simulated images reproduced the observed spatial structures excited in the disc. Mode-analysis of the simulated images indicates that the spatial features observed in the transmission images originate mainly from a few fundamental plasmon modes of the disc.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  2. C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
    [CrossRef] [PubMed]
  3. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  5. G. C. Schatz and R. P. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy, ” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).
  6. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  8. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  9. M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [CrossRef] [PubMed]
  10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  11. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  13. K. Imura, T. Nagahara, H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
    [CrossRef] [PubMed]
  14. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
    [CrossRef] [PubMed]
  15. B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
    [CrossRef] [PubMed]
  16. I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
    [CrossRef] [PubMed]
  17. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [CrossRef] [PubMed]
  18. P. Hanarp, M. Käll, D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003).
    [CrossRef]
  19. C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
    [CrossRef] [PubMed]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  21. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [CrossRef]
  22. F. Papoff, B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express 19(22), 21432–21444 (2011).
    [CrossRef] [PubMed]
  23. K. Holms, B. Hourahine, F. Papoff, “Calculation of internal and scattered fields of axisymmetric nanoparticles at any point in space,” J. Opt. A, Pure Appl. Opt. 11(5), 054009 (2009).
    [CrossRef]
  24. B. Hourahine, K. Holms, F. Papoff, “Accurate light scattering for non spherical particles from Mie-type theory,” J. Phys. Conf. Ser. 367, 012010 (2012).
    [CrossRef]
  25. B. Hourahine, F. Papoff, “The geometrical nature of optical resonances: from a sphere to fused dimer nanoparticles,” Meas. Sci. Technol. 23(8), 084002 (2012).
    [CrossRef]
  26. D. McArthur, B. Hourahine, F. Papoff, “Evaluation of E.M. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. J. 4, 565–575 (2014).
  27. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006).
    [CrossRef] [PubMed]
  28. H. Okamoto, K. Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4(13), 2230–2241 (2013).
    [CrossRef]
  29. K. Imura, K. Ueno, H. Misawa, H. Okamoto, “Anomalous light transmission from plasmonic-capped nanoapertures,” Nano Lett. 11(3), 960–965 (2011).
    [CrossRef] [PubMed]
  30. K. Imura, T. Nagahara, H. Okamoto, “Characteristic near-field spectra of single gold nanoparticles,” Chem. Phys. Lett. 400(4–6), 500–505 (2004).
    [CrossRef]
  31. K. Imura, T. Nagahara, H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
    [CrossRef] [PubMed]
  32. J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194(2–3), 477–482 (1999).
    [CrossRef] [PubMed]
  33. F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
    [CrossRef] [PubMed]
  34. A. Drezet, M. J. Nasse, S. Huant, J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
    [CrossRef]
  35. E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
    [CrossRef]
  36. M. Paulus, P. Gay-Balmaz, O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(4), 5797–5807 (2000).
    [CrossRef] [PubMed]

2014

D. McArthur, B. Hourahine, F. Papoff, “Evaluation of E.M. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. J. 4, 565–575 (2014).

2013

H. Okamoto, K. Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4(13), 2230–2241 (2013).
[CrossRef]

C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[CrossRef] [PubMed]

2012

B. Hourahine, K. Holms, F. Papoff, “Accurate light scattering for non spherical particles from Mie-type theory,” J. Phys. Conf. Ser. 367, 012010 (2012).
[CrossRef]

B. Hourahine, F. Papoff, “The geometrical nature of optical resonances: from a sphere to fused dimer nanoparticles,” Meas. Sci. Technol. 23(8), 084002 (2012).
[CrossRef]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[CrossRef] [PubMed]

2011

F. Papoff, B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express 19(22), 21432–21444 (2011).
[CrossRef] [PubMed]

K. Imura, K. Ueno, H. Misawa, H. Okamoto, “Anomalous light transmission from plasmonic-capped nanoapertures,” Nano Lett. 11(3), 960–965 (2011).
[CrossRef] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[CrossRef] [PubMed]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

2009

K. Holms, B. Hourahine, F. Papoff, “Calculation of internal and scattered fields of axisymmetric nanoparticles at any point in space,” J. Opt. A, Pure Appl. Opt. 11(5), 054009 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

2008

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

2007

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

2006

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

2005

K. Imura, T. Nagahara, H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[CrossRef]

K. Imura, T. Nagahara, H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[CrossRef] [PubMed]

2004

K. Imura, T. Nagahara, H. Okamoto, “Characteristic near-field spectra of single gold nanoparticles,” Chem. Phys. Lett. 400(4–6), 500–505 (2004).
[CrossRef]

A. Drezet, M. J. Nasse, S. Huant, J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

2003

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
[CrossRef]

P. Hanarp, M. Käll, D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2002

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

2000

M. Paulus, P. Gay-Balmaz, O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(4), 5797–5807 (2000).
[CrossRef] [PubMed]

1999

J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194(2–3), 477–482 (1999).
[CrossRef] [PubMed]

1994

Alber, I.

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Botton, G. A.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Brolo, A. G.

C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[CrossRef] [PubMed]

Camden, J. P.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Coronado, E. A.

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
[CrossRef]

Couillard, M.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[CrossRef] [PubMed]

Draine, B. T.

Drezet, A.

A. Drezet, M. J. Nasse, S. Huant, J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Flatau, P. J.

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Garcia-Parajo, M. F.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194(2–3), 477–482 (1999).
[CrossRef] [PubMed]

Gay-Balmaz, P.

M. Paulus, P. Gay-Balmaz, O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(4), 5797–5807 (2000).
[CrossRef] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Guiton, B. S.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Hanarp, P.

P. Hanarp, M. Käll, D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hofer, F.

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[CrossRef] [PubMed]

Hohenau, A.

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[CrossRef] [PubMed]

Hohenester, U.

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[CrossRef] [PubMed]

Holms, K.

B. Hourahine, K. Holms, F. Papoff, “Accurate light scattering for non spherical particles from Mie-type theory,” J. Phys. Conf. Ser. 367, 012010 (2012).
[CrossRef]

K. Holms, B. Hourahine, F. Papoff, “Calculation of internal and scattered fields of axisymmetric nanoparticles at any point in space,” J. Opt. A, Pure Appl. Opt. 11(5), 054009 (2009).
[CrossRef]

Hourahine, B.

D. McArthur, B. Hourahine, F. Papoff, “Evaluation of E.M. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. J. 4, 565–575 (2014).

B. Hourahine, K. Holms, F. Papoff, “Accurate light scattering for non spherical particles from Mie-type theory,” J. Phys. Conf. Ser. 367, 012010 (2012).
[CrossRef]

B. Hourahine, F. Papoff, “The geometrical nature of optical resonances: from a sphere to fused dimer nanoparticles,” Meas. Sci. Technol. 23(8), 084002 (2012).
[CrossRef]

F. Papoff, B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express 19(22), 21432–21444 (2011).
[CrossRef] [PubMed]

K. Holms, B. Hourahine, F. Papoff, “Calculation of internal and scattered fields of axisymmetric nanoparticles at any point in space,” J. Opt. A, Pure Appl. Opt. 11(5), 054009 (2009).
[CrossRef]

Huant, S.

A. Drezet, M. J. Nasse, S. Huant, J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Iberi, V.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Imura, K.

H. Okamoto, K. Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4(13), 2230–2241 (2013).
[CrossRef]

K. Imura, K. Ueno, H. Misawa, H. Okamoto, “Anomalous light transmission from plasmonic-capped nanoapertures,” Nano Lett. 11(3), 960–965 (2011).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Characteristic near-field spectra of single gold nanoparticles,” Chem. Phys. Lett. 400(4–6), 500–505 (2004).
[CrossRef]

Juodkazis, S.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Käll, M.

P. Hanarp, M. Käll, D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003).
[CrossRef]

Kasemo, B.

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Kotula, P. G.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Krenn, J. R.

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Kuipers, L.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194(2–3), 477–482 (1999).
[CrossRef] [PubMed]

Kumacheva, E.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Langhammer, C.

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

Leonard, D. N.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Li, S.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Martin, O. J. F.

M. Paulus, P. Gay-Balmaz, O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(4), 5797–5807 (2000).
[CrossRef] [PubMed]

McArthur, D.

D. McArthur, B. Hourahine, F. Papoff, “Evaluation of E.M. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. J. 4, 565–575 (2014).

Misawa, H.

K. Imura, K. Ueno, H. Misawa, H. Okamoto, “Anomalous light transmission from plasmonic-capped nanoapertures,” Nano Lett. 11(3), 960–965 (2011).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Mizeikis, V.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[CrossRef]

Müller, S.

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Characteristic near-field spectra of single gold nanoparticles,” Chem. Phys. Lett. 400(4–6), 500–505 (2004).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nasse, M. J.

A. Drezet, M. J. Nasse, S. Huant, J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Neumann, R.

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Okamoto, H.

H. Okamoto, K. Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4(13), 2230–2241 (2013).
[CrossRef]

K. Imura, K. Ueno, H. Misawa, H. Okamoto, “Anomalous light transmission from plasmonic-capped nanoapertures,” Nano Lett. 11(3), 960–965 (2011).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Characteristic near-field spectra of single gold nanoparticles,” Chem. Phys. Lett. 400(4–6), 500–505 (2004).
[CrossRef]

Papoff, F.

D. McArthur, B. Hourahine, F. Papoff, “Evaluation of E.M. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. J. 4, 565–575 (2014).

B. Hourahine, K. Holms, F. Papoff, “Accurate light scattering for non spherical particles from Mie-type theory,” J. Phys. Conf. Ser. 367, 012010 (2012).
[CrossRef]

B. Hourahine, F. Papoff, “The geometrical nature of optical resonances: from a sphere to fused dimer nanoparticles,” Meas. Sci. Technol. 23(8), 084002 (2012).
[CrossRef]

F. Papoff, B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express 19(22), 21432–21444 (2011).
[CrossRef] [PubMed]

K. Holms, B. Hourahine, F. Papoff, “Calculation of internal and scattered fields of axisymmetric nanoparticles at any point in space,” J. Opt. A, Pure Appl. Opt. 11(5), 054009 (2009).
[CrossRef]

Parish, C. M.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Paulus, M.

M. Paulus, P. Gay-Balmaz, O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(4), 5797–5807 (2000).
[CrossRef] [PubMed]

Pennycook, S. J.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Picht, O.

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

Rauber, M.

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Rossouw, D.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Sasaki, K.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Schatz, G. C.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
[CrossRef]

Schmidt, F. P.

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Sigle, W.

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Sutherland, D. S.

P. Hanarp, M. Käll, D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Toimil-Molares, M. E.

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

Ueno, K.

K. Imura, K. Ueno, H. Misawa, H. Okamoto, “Anomalous light transmission from plasmonic-capped nanoapertures,” Nano Lett. 11(3), 960–965 (2011).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Valsecchi, C.

C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[CrossRef] [PubMed]

van Aken, P. A.

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

van Hulst, N. F.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194(2–3), 477–482 (1999).
[CrossRef] [PubMed]

Varela, M.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Veerman, J. A.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194(2–3), 477–482 (1999).
[CrossRef] [PubMed]

Vickery, J.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Woehl, J. C.

A. Drezet, M. J. Nasse, S. Huant, J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zoric, I.

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

ACS Nano

I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011).
[CrossRef] [PubMed]

Chem. Phys. Lett.

K. Imura, T. Nagahara, H. Okamoto, “Characteristic near-field spectra of single gold nanoparticles,” Chem. Phys. Lett. 400(4–6), 500–505 (2004).
[CrossRef]

Chem. Rev.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Europhys. Lett.

A. Drezet, M. J. Nasse, S. Huant, J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

J. Am. Chem. Soc.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

J. Chem. Phys.

E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003).
[CrossRef]

C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[CrossRef] [PubMed]

J. Microsc.

J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194(2–3), 477–482 (1999).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

K. Holms, B. Hourahine, F. Papoff, “Calculation of internal and scattered fields of axisymmetric nanoparticles at any point in space,” J. Opt. A, Pure Appl. Opt. 11(5), 054009 (2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

P. Hanarp, M. Käll, D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003).
[CrossRef]

K. Imura, T. Nagahara, H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Phys. Chem. Lett.

H. Okamoto, K. Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4(13), 2230–2241 (2013).
[CrossRef]

J. Phys. Conf. Ser.

B. Hourahine, K. Holms, F. Papoff, “Accurate light scattering for non spherical particles from Mie-type theory,” J. Phys. Conf. Ser. 367, 012010 (2012).
[CrossRef]

J. Raman Spectrosc.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[CrossRef]

Langmuir

C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[CrossRef] [PubMed]

Meas. Sci. Technol.

B. Hourahine, F. Papoff, “The geometrical nature of optical resonances: from a sphere to fused dimer nanoparticles,” Meas. Sci. Technol. 23(8), 084002 (2012).
[CrossRef]

Nano Lett.

K. Imura, K. Ueno, H. Misawa, H. Okamoto, “Anomalous light transmission from plasmonic-capped nanoapertures,” Nano Lett. 11(3), 960–965 (2011).
[CrossRef] [PubMed]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[CrossRef] [PubMed]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011).
[CrossRef] [PubMed]

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

M. Paulus, P. Gay-Balmaz, O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(4), 5797–5807 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett.

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Phys. Sci. Int. J.

D. McArthur, B. Hourahine, F. Papoff, “Evaluation of E.M. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. J. 4, 565–575 (2014).

Science

M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Other

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

G. C. Schatz and R. P. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy, ” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A SEM image of gold nanodiscs (diameter 400 nm × height 35 nm). (b) Far field transmission spectrum of the disc. (c) Near-field transmission spectrum taken at the edge of the disc.

Fig. 2
Fig. 2

(a,b) Polarized near-field transmission images of gold nanodiscs (diameter 400 nm × height 35 nm) observed at 780 nm. Arrows indicate the direction of incident polarization. (c-e) Unpolarized near-field transmission images for the gold nanodiscs. Observed wavelength: ~780 nm for (c), ~640 nm for (d), and ~520 nm for (e). Dotted circles indicate the approximate shape of the disc. Image size: 4 μm × 4 μm. Scale bar: 500 nm.

Fig. 3
Fig. 3

(a,b) Near-field transmission images of gold nanodiscs (diameter 800 nm × height 35 nm). Observed wavelength: 710 nm for (a), 790 nm for (b). (c,d) Line profiles taken along the dotted lines in (a,b), respectively.

Fig. 4
Fig. 4

(a) The theoretical near-field transmission image for the 400-nm diameter disc at an incident wavelength of 780 nm, corresponding to Fig. 2(b), calculated using an incident field linearly polarized along the vertical direction of the figure, where the colour scale corresponds to the unpolarized signal collected by the detector in the far field I normalized by the intensity of the incident field I0. The corresponding images for the 800-nm diameter disc at (b) 705 nm and (c) 765 nm where the incident field is unpolarized and instead the signal collected by the detector is linearly polarized along the vertical direction of the figures.

Fig. 5
Fig. 5

(a) Plot of (sin ξ)–1 as a function of wavelength for the dominant m = 0 mode of the 400-nm diameter disc, where the cos ξ is the spatial correlation of internal and scattered surface fields of the mode. The plot shows the increase in excitability of the mode as it approaches its resonance at ~725 nm. (b) The amount of energy scattered towards the detector (Ps) for the two positions of the fibre tip marked in (c), normalized by the power of the incident field (P0), as functions of wavelength. The feature at ca. 675 nm is due to two pairs of modes becoming almost degenerate and mixing properties. (c) The surface electric field intensity and polarization of the real part of the electric field for the dominant m = 0 mode. (d) Excitation map showing the contribution of the linearly polarized component of the dominant mode for the same channel. The scattered intensity, depicted by the color bar, is normalized to be in units of the incident field. (e) Excitation map, as in (d), but for all modes of the m = 0 channel. (f) As in (c) but for the superposition of the dominant modes of the m = ± 1 channels.

Fig. 6
Fig. 6

(a) Plots of (sin ξ)–1 as functions of wavelength for the dominant modes of the m = 0 and m = 1 channels for the 800-nm diameter disc are shown where the axes are the same as Fig. 5(a). (b,c) The normalized scattered intensity for the m = 0 channel far from resonance at 705 nm, (b), and close to it at 765 nm, (c).

Metrics