Abstract

Switchable and tunable chiral metamaterial response is numerically demonstrated here in different uniaxial chiral metamaterial structures operating in the THz regime. The structures are based on the bi-layer conductor design and the tunable/switchable response is achieved by replacing parts of the metallic components of the structures by photoconducting Si, which can be transformed from an insulating to an almost conducting state through photoexcitation, achievable under external optical pumping. All the structures proposed and discussed here exhibit frequency regions with giant tunable circular dichroism, as well as regions with giant tunable optical activity, showing unique potential in the achievement of active THz polarization components, like tunable polarizers and polarization filters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wegener and S. Linden, “Giving light yet another new twist,” Physics 2, 3–6 (2009).
    [Crossref]
  2. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  3. K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
    [Crossref]
  4. N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature 401(6749), 152–155 (1999).
    [Crossref] [PubMed]
  5. J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality,” Science 304(5668), 278–281 (2004).
    [Crossref] [PubMed]
  6. K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
    [Crossref] [PubMed]
  7. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
    [Crossref] [PubMed]
  8. J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
    [Crossref]
  9. B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
    [Crossref]
  10. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
    [Crossref]
  11. Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
    [Crossref] [PubMed]
  12. G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
    [Crossref]
  13. J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
    [Crossref]
  14. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
    [Crossref] [PubMed]
  15. Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
    [Crossref]
  16. X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
    [Crossref]
  17. R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
    [Crossref]
  18. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
    [Crossref] [PubMed]
  19. M. Kafesaki, N. H. Shen, S. Tzortzakis, and C. M. Soukoulis, “Optically switchable and tunable terahertz metamaterials through photoconductivity,” J. Opt. 14(11), 114008 (2012).
    [Crossref]
  20. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [Crossref] [PubMed]
  21. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
    [Crossref] [PubMed]
  22. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
    [Crossref] [PubMed]
  23. J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
    [Crossref]
  24. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  25. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
    [Crossref]
  26. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  27. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
    [Crossref]
  28. X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater. 323(20), 2425–2428 (2011).
    [Crossref]
  29. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [Crossref] [PubMed]
  30. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

2013 (1)

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

2012 (6)

Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
[Crossref] [PubMed]

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

M. Kafesaki, N. H. Shen, S. Tzortzakis, and C. M. Soukoulis, “Optically switchable and tunable terahertz metamaterials through photoconductivity,” J. Opt. 14(11), 114008 (2012).
[Crossref]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

2011 (4)

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater. 323(20), 2425–2428 (2011).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

2010 (2)

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

2009 (7)

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

M. Wegener and S. Linden, “Giving light yet another new twist,” Physics 2, 3–6 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (3)

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

2007 (1)

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

2005 (1)

K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
[Crossref] [PubMed]

2004 (1)

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

1999 (1)

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature 401(6749), 152–155 (1999).
[Crossref] [PubMed]

1994 (1)

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Alici, K. B.

Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
[Crossref] [PubMed]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Aoki, M.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

Averitt, R. D.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Azad, A. K.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bao, Y. J.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Caglayan, H.

Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
[Crossref] [PubMed]

Chen, H.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Chen, H. T.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Chowdhury, D. R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Colak, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

de Jong, J. J. D.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

Decker, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

Dong, J.

J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Economou, E. N.

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Feringa, B. L.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature 401(6749), 152–155 (1999).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Geng, Z. X.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater. 323(20), 2425–2428 (2011).
[Crossref]

Gokkavas, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

Gui, T. L.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater. 323(20), 2425–2428 (2011).
[Crossref]

Han, J.

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

Harada, N.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature 401(6749), 152–155 (1999).
[Crossref] [PubMed]

Harada, T.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

He, X. J.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater. 323(20), 2425–2428 (2011).
[Crossref]

Ikeda, K.

K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
[Crossref] [PubMed]

Kafesaki, M.

Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
[Crossref] [PubMed]

M. Kafesaki, N. H. Shen, S. Tzortzakis, and C. M. Soukoulis, “Optically switchable and tunable terahertz metamaterials through photoconductivity,” J. Opt. 14(11), 114008 (2012).
[Crossref]

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Katsarakis, N.

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

Kawabata, H.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

Kellogg, R. M.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

Kenanakis, G.

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

Klein, M. W.

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

Komori, T.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

Konstantinidis, G.

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

Koschny, Th.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Koshihara, S. Y.

K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
[Crossref] [PubMed]

Koumura, N.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature 401(6749), 152–155 (1999).
[Crossref] [PubMed]

Kriegler, C. E.

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

Kwon, D. H.

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

Li, Z.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
[Crossref] [PubMed]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Li, Z. F.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Linden, S.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Wegener and S. Linden, “Giving light yet another new twist,” Physics 2, 3–6 (2009).
[Crossref]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

Liu, W.

K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
[Crossref] [PubMed]

Lu, X.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Lucas, L. N.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

Manceau, J. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Massaouti, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Ming, N. B.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Murata, K.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

Mutlu, M.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

O’Hara, J. F.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Ohashi, Y.

K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
[Crossref] [PubMed]

Ohseto, F.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

Ozbay, E.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
[Crossref] [PubMed]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Padilla, W. J.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Peng, R. W.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ruther, M.

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Shao, J.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Shen, N. H.

M. Kafesaki, N. H. Shen, S. Tzortzakis, and C. M. Soukoulis, “Optically switchable and tunable terahertz metamaterials through photoconductivity,” J. Opt. 14(11), 114008 (2012).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Shen, Y. R.

K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
[Crossref] [PubMed]

Shinkai, S.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Singh, R.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

Soukoulis, C. M.

M. Kafesaki, N. H. Shen, S. Tzortzakis, and C. M. Soukoulis, “Optically switchable and tunable terahertz metamaterials through photoconductivity,” J. Opt. 14(11), 114008 (2012).
[Crossref]

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
[Crossref] [PubMed]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Stavrinidis, A.

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

Sun, C.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Sun, W. H.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Suzuki, T.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

Taylor, A. J.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tzortzakis, S.

M. Kafesaki, N. H. Shen, S. Tzortzakis, and C. M. Soukoulis, “Optically switchable and tunable terahertz metamaterials through photoconductivity,” J. Opt. 14(11), 114008 (2012).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Ueda, K.

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

Uekusa, H.

K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
[Crossref] [PubMed]

van Delden, R. A.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature 401(6749), 152–155 (1999).
[Crossref] [PubMed]

van Esch, J. H.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, B.

B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

Wang, J. M.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater. 323(20), 2425–2428 (2011).
[Crossref]

Wang, M.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Wang, Y.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater. 323(20), 2425–2428 (2011).
[Crossref]

Wegener, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

M. Wegener and S. Linden, “Giving light yet another new twist,” Physics 2, 3–6 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

Werner, D. H.

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

Werner, P. L.

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

Xiong, X.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

Yin, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Zhang, L.

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Zhang, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

Zhang, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Zhao, R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zhou, J.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

Zijlstra, R. W. J.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature 401(6749), 152–155 (1999).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation,” J. Am. Chem. Soc. 116(15), 6664–6676 (1994).
[Crossref]

J. Chem. Phys. (1)

K. Ikeda, W. Liu, Y. R. Shen, H. Uekusa, Y. Ohashi, and S. Y. Koshihara, “Photo-induced chirality switching in a cobaloxime complex crystal,” J. Chem. Phys. 122(14), 141103 (2005).
[Crossref] [PubMed]

J. Magn. Magn. Mater. (1)

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater. 323(20), 2425–2428 (2011).
[Crossref]

J. Opt. (2)

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

M. Kafesaki, N. H. Shen, S. Tzortzakis, and C. M. Soukoulis, “Optically switchable and tunable terahertz metamaterials through photoconductivity,” J. Opt. 14(11), 114008 (2012).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Nat. Commun. (1)

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Nature (1)

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature 401(6749), 152–155 (1999).
[Crossref] [PubMed]

Opt. Express (3)

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express 20(6), 6146–6156 (2012).
[Crossref] [PubMed]

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007).
[Crossref] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (2)

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs,” Opt. Mater. Express 2(12), 1702–1712 (2012).
[Crossref]

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express 2(1), 31 (2012).
[Crossref]

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (5)

J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[Crossref]

R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Phys. Rev. Lett. (1)

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, Th. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Physics (1)

M. Wegener and S. Linden, “Giving light yet another new twist,” Physics 2, 3–6 (2009).
[Crossref]

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the unit cell of the chiral metamaterials under consideration: (a), (b) cross-wires and (c) Z-type crosses with φ = 90°, respectively. Grey color corresponds to photoconductive silicon and yellow corresponds to metal (silver). The metal (yellow-color) thickness tm and the dimensions ax, ay, L, w, d and φ, for each design are presented in Table 1. The wave propagation is along the z direction.

Fig. 2
Fig. 2

Simulated transmission amplitudes |Txx| (upper panels) and |Txy| (lower panels), for the chiral metamaterials shown in Fig. 1, for linearly polarized incident wave. One can see the cases of Silver (black lines) and photoconductive Silicon with σSi = 1 × 105 S/m (red lines) or 1 × 103 S/m (green lines) or 2.5 × 10−4 S/m (blue lines), respectively. The insets show the corresponding current distributions at the resonance frequencies for σSi = 1 × 103 S/m with the Ey linearly polarized incident wave.

Fig. 3
Fig. 3

Simulated magnitude of the transmission coefficients for the right circularly polarized, ∣T++∣ (solid lines), and the left circularly polarized, ∣T−−∣ (dashed lines), electromagnetic wave, for the chiral metamaterials under consideration. One can see the cases of Silver (black lines) and photoconductive Silicon with σSi = 1 × 105 S/m (red lines) to 1 × 103 S/m (green lines) and 2.5 × 10−4 S/m (blue lines), respectively. The insets show the corresponding designs in which grey color corresponds to photoconductive Silicon and yellow corresponds to metal (Silver).

Fig. 4
Fig. 4

Simulated azimuth rotation angle, θ (solid lines) and simulated ellipticity, η (dashed lines), for the chiral metamaterials under consideration. One can see the cases of Silver (black lines) and photoconductive Silicon with σSi = 1 × 105 S/m (red lines) or 1 × 103 S/m (green lines) or 2.5 × 10−4 S/m (blue lines), respectively. The insets show the corresponding designs in which grey color corresponds to photoconductive Silicon and yellow corresponds to metal (Silver). Note that the sharp peaks and jumps in the rotation angle are a result of the strong resonant response.

Fig. 5
Fig. 5

Impressive variation of the simulated maximum ellipticity, η, for the cross-wires design with Silicon in the center of the structure as a function of photoconductivity σSi, in the frequency range 5-7 THz.

Fig. 6
Fig. 6

(a) Each column shows the simulated transmission amplitudes for linearly polarized incident wave |Txx| (solid lines) and |Txy| (dashed lines) for the structure shown in the inset, (b) the transmission amplitudes for circularly polarized incident waves ∣T++∣ (solid lines) and ∣T−−∣ (dashed lines), and (c) the azimuth rotation angle, θ (solid lines) and the ellipticity, η (dashed lines). One can see the cases where the top conducting layer is Silver (black lines) and photoconductive Silicon with σSi = 1 × 105 S/m (red lines) to 1 × 103 S/m (green lines) and 2.5 × 10−4 S/m (blue lines), respectively. In the insets showing the designs yellow corresponds to metal (Silver) and grey corresponds to photoconductive Silicon.

Tables (1)

Tables Icon

Table 1 Dimensions (in Microns) of Chiral Metamaterials under Consideration (See Fig. 1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( T ++ T + T + T )= 1 2 ×( ( T xx + T yy )+i( T xy - T yx ) ( T xx - T yy )-i( T xy + T yx ) ( T xx - T yy )+i( T xy + T yx ) ( T xx + T yy )-i( T xy - T yx ) )

Metrics