Abstract

We describe the growth of InP layer using an ultrathin III-V active layer that is directly bonded to SiO2/Si substrate to fabricate a buried heterostructure (BH) laser. Using a 250-nm-thick bonded active layer, we succeeded in fabricating a BH distributed feedback (DFB) laser on SiO2/Si substrate. The use of a lateral current injection structure is important for forming a p-i-n junction using bonded thin film. The fabricated DFB laser is directly modulated by a 25.8-Gbit/s NRZ signal at 50°C. These results indicate that our fabrication method is a promising way to fabricate high-efficiency lasers at a low cost.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
    [CrossRef]
  2. S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
    [CrossRef]
  3. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
    [CrossRef]
  4. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  5. T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
    [CrossRef]
  6. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [CrossRef]
  7. J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
    [CrossRef]
  8. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
    [CrossRef]
  9. D. Liang, G. Roelkens, R. Baets, J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
    [CrossRef]
  10. A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, M. W. Wanlass, “InGaAsP/InP double heterostructures on InP on Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83(26), 5413–5415 (2003).
    [CrossRef]
  11. A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
    [CrossRef]
  12. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669 (2002).
    [CrossRef]
  13. K. Matsumoto, T. Makino, K. Kimura, K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370(1), 133–135 (2013).
    [CrossRef]
  14. C. Zhang, D. Liang, J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” ECS Solid State Lett. 2(11), Q82–Q86 (2013).
    [CrossRef]
  15. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
    [CrossRef] [PubMed]
  16. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
    [CrossRef]
  17. T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
    [CrossRef] [PubMed]

2014

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

2013

K. Matsumoto, T. Makino, K. Kimura, K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370(1), 133–135 (2013).
[CrossRef]

C. Zhang, D. Liang, J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” ECS Solid State Lett. 2(11), Q82–Q86 (2013).
[CrossRef]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

2012

2011

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[CrossRef] [PubMed]

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

2010

D. Liang, G. Roelkens, R. Baets, J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

2009

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

2003

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, M. W. Wanlass, “InGaAsP/InP double heterostructures on InP on Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83(26), 5413–5415 (2003).
[CrossRef]

2002

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669 (2002).
[CrossRef]

2000

K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[CrossRef]

Ahrenkiel, S. P.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, M. W. Wanlass, “InGaAsP/InP double heterostructures on InP on Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83(26), 5413–5415 (2003).
[CrossRef]

Ambrosius, H.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

Amemiya, T.

Arai, S.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, S. Arai, “GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating,” Opt. Express 19(3), 1884–1891 (2011).
[CrossRef] [PubMed]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Atsumi, Y.

Atwater, H. A.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, M. W. Wanlass, “InGaAsP/InP double heterostructures on InP on Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83(26), 5413–5415 (2003).
[CrossRef]

Baets, R.

D. Liang, G. Roelkens, R. Baets, J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[CrossRef]

Ben Bakir, B.

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Beninca de Farias, G.

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Bordas, F.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

Bordel, D.

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Bowers, J. E.

C. Zhang, D. Liang, J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” ECS Solid State Lett. 2(11), Q82–Q86 (2013).
[CrossRef]

D. Liang, G. Roelkens, R. Baets, J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[CrossRef]

Brianceau, P.

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Descos, A.

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Duprez, H.

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Fontcuberta i Morral, A.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, M. W. Wanlass, “InGaAsP/InP double heterostructures on InP on Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83(26), 5413–5415 (2003).
[CrossRef]

Fujii, T.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

Fujisawa, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Hasebe, K.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

Hiraiwa, K.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Iga, K.

K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[CrossRef]

Imai, S.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Ishikawa, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Ito, H.

Ito, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Iwai, N.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Jany, C.

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Kakitsuka, T.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Kamiya, S.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Kang, J.

Karouta, F.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

Kasukawa, A.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Kawakita, Y.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Kimura, K.

K. Matsumoto, T. Makino, K. Kimura, K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370(1), 133–135 (2013).
[CrossRef]

Kobayashi, W.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

Koguchi, T.

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Kuramochi, E.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Liang, D.

C. Zhang, D. Liang, J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” ECS Solid State Lett. 2(11), Q82–Q86 (2013).
[CrossRef]

D. Liang, G. Roelkens, R. Baets, J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[CrossRef]

Makino, T.

K. Matsumoto, T. Makino, K. Kimura, K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370(1), 133–135 (2013).
[CrossRef]

Matsumoto, K.

K. Matsumoto, T. Makino, K. Kimura, K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370(1), 133–135 (2013).
[CrossRef]

Matsuo, S.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Menezo, S.

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669 (2002).
[CrossRef]

Nishiyama, N.

Notomi, M.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Nozaki, K.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Nunoya, N.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Okamoto, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Okumura, T.

Onodera, Y.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Osabe, R.

Pello, J.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

Roelkens, G.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

D. Liang, G. Roelkens, R. Baets, J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[CrossRef]

Sanjoh, H.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Sato, T.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Shimizu, H.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Shimomura, K.

K. Matsumoto, T. Makino, K. Kimura, K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370(1), 133–135 (2013).
[CrossRef]

Shindo, T.

Shinya, A.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669 (2002).
[CrossRef]

Smit, M.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

Suzuki, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Takagi, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Takahashi, D.

Takaki, K.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Takeda, K.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

Tamura, S.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Taniyama, H.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

Thijs, P.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669 (2002).
[CrossRef]

Tsukiji, N.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

van der Tol, J.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

Wanlass, M. W.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, M. W. Wanlass, “InGaAsP/InP double heterostructures on InP on Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83(26), 5413–5415 (2003).
[CrossRef]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669 (2002).
[CrossRef]

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669 (2002).
[CrossRef]

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Yamazaki, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Yoshida, J.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

Zahler, J. M.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, M. W. Wanlass, “InGaAsP/InP double heterostructures on InP on Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83(26), 5413–5415 (2003).
[CrossRef]

Zhang, C.

C. Zhang, D. Liang, J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” ECS Solid State Lett. 2(11), Q82–Q86 (2013).
[CrossRef]

Zhang, R.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

Appl. Phys. Lett.

A. Fontcuberta i Morral, J. M. Zahler, H. A. Atwater, S. P. Ahrenkiel, M. W. Wanlass, “InGaAsP/InP double heterostructures on InP on Si templates fabricated by wafer bonding and hydrogen-induced exfoliation,” Appl. Phys. Lett. 83(26), 5413–5415 (2003).
[CrossRef]

ECS Solid State Lett.

C. Zhang, D. Liang, J. E. Bowers, “MOCVD regrowth of InP on hybrid silicon substrate,” ECS Solid State Lett. 2(11), Q82–Q86 (2013).
[CrossRef]

Electron. Lett.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[CrossRef]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs For “Green” Optical Interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[CrossRef]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, S. Arai,“Optically pumped membrane BH DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

IET Optoelectron.

J. van der Tol, R. Zhang, J. Pello, F. Bordas, G. Roelkens, H. Ambrosius, P. Thijs, F. Karouta, M. Smit, “Photonic integration in indium-phosphide membranes on silicon,” IET Optoelectron. 5(5), 218–225 (2011).
[CrossRef]

J. Cryst. Growth

K. Matsumoto, T. Makino, K. Kimura, K. Shimomura, “Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate,” J. Cryst. Growth 370(1), 133–135 (2013).
[CrossRef]

J. Phys. D

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe, T. Kakitsuka, “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D 47(2), 023001 (2014).
[CrossRef]

Materials

D. Liang, G. Roelkens, R. Baets, J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[CrossRef]

Nat. Photonics

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Opt. Express

Proc. IEEE

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Other

A. Descos, C. Jany, D. Bordel, H. Duprez, G. Beninca de Farias, P. Brianceau, S. Menezo, B. Ben Bakir, “Heterogeneously integrated III-V/Si distributed Bragg reflector laser with adiabatic coupling,” in Proc. ECOC (2013), Th.1.B.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

. Concept of fabrication for III-V photonic devices on large SiO2/Si wafer, in which III-V layer is directly bonded on SiO2/Si wafer. To improve the device performance, core layers are embedded with an InP layer. By changing the core layer, different functional devices such as laser, modulator and photodetector are simultaneously fabricated. Inset: close up of device integrated with SSCs using inverse taper waveguide.

Fig. 2
Fig. 2

Fabrication procedure for InGaAsP/InP BH on SiO2/Si substrate: (a) Direct bonding of active layer, (b) bonded active layer on SiO2/Si substrate, (c) mesa formation, (d) BH growth, (e) Zn thermal diffusion and Si ion implantation, and (f) surface grating and electrodes.

Fig. 3
Fig. 3

PL spectra for the MQWs on SiO2/Si substrate after bonding (solid lines) and annealing (dashed lines). The three samples were directly bonded by using O2 plasma at 200°C. They were annealed in an MOVPE reactor at 610°C in a PH3 atmosphere for 30 minutes

Fig. 4
Fig. 4

(a) Photograph of substrate after fabricating InGaAsP/InP BH on 2-inch SiO2/Si substrate. (b) Cross-sectional SEM image of BH and InGaAs contact layer. (c) PL spectra of buried InGaAsP/InGaAsP MQWs on SiO2/Si and on InP substrates.

Fig. 5
Fig. 5

(a) Schematic diagram of device. Surface grating is used to fabricate the DFB laser. (b) SEM image of fabricated DFB laser on SiO2/Si substrate. (c) Calculated optical mode field. (d) Optical confinement factor as a function of active region width.

Fig. 6
Fig. 6

Injection current dependence of static characteristics of fabricated devices: (a) output power and voltage; (b) differential resistance and wall plug efficiency.

Fig. 7
Fig. 7

(a) Lasing spectrum with a bias current of 10 mA. SMSR was 40.4 dB. (b) I-L characteristics for various operating temperatures.

Fig. 8
Fig. 8

(a) BER performance of device operated with bias current of 8.0 mA and modulation voltage of 0.6 V at 25°C and with bias current of 9.5 mA and modulation voltage of 0.63 V at 50°C. Eye diagrams for (b) 25 and (c) 50°C operation.

Metrics