Abstract

A new technique for Brillouin scattering-based, distributed fiber-optic measurements of temperature and strain is proposed, analyzed, simulated, and demonstrated. Broadband Brillouin pump and signal waves are drawn from the filtered amplified spontaneous emission of an erbium-doped fiber amplifier, providing high spatial resolution. The reconstruction of the position-dependent Brillouin gain spectra along 5 cm of a silica single-mode fiber under test, with a spatial resolution of 4 mm, is experimentally demonstrated using a 25 GHz-wide amplified spontaneous emission source. A 4 mm-long localized hot spot is identified by the measurements. The uncertainty in the reconstruction of the local Brillouin frequency shift is ± 1.5 MHz. The single correlation peak between the pump and signal is scanned along a fiber under test using a mechanical variable delay line. The analysis of the expected spatial resolution and the measurement signal-to-noise ratio is provided. The measurement principle is supported by numerical simulations of the stimulated acoustic field as a function of position and time. Unlike most other Brillouin optical correlation domain analysis configurations, the proposed scheme is not restricted by the bandwidth of available electro-optic modulators, microwave synthesizers, or pattern generators. Resolution is scalable to less than one millimeter in highly nonlinear media.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [CrossRef] [PubMed]
  3. T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
    [CrossRef]
  4. M. Niklès, L. Thévenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [CrossRef] [PubMed]
  5. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [CrossRef] [PubMed]
  6. Y. Dong, L. Chen, X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [CrossRef] [PubMed]
  7. Y. Peled, A. Motil, M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [CrossRef] [PubMed]
  8. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution.,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.
  9. X. Bao, L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
    [CrossRef] [PubMed]
  10. Y. Dong, H. Zhang, L. Chen, X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [CrossRef] [PubMed]
  11. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
    [CrossRef] [PubMed]
  12. Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
    [CrossRef] [PubMed]
  13. K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  14. K. Hotate, “Fiber distributed Brillouin sensing with optical correlation domain techniques,” Opt. Fiber Technol. 19(6), 700–719 (2013).
    [CrossRef]
  15. K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  16. A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).
  17. A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 87943I (2013).
  18. D. Elooz, Y. Antman, N. Levanon, A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
    [CrossRef] [PubMed]
  19. K. Hotate, H. Arai, K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE Journal of Control, Measurement, and System Integration 1(4), 271–274 (2008).
    [CrossRef]
  20. J. W. Goodman, Statistical Optics, Wiley Classics Library Edition (John Wiley & Sons, 2000).
  21. R. Cohen, Y. London, Y. Antman, and A. Zadok, “Few millimeter-resolution Brillouin optical correlation domain analysis using amplified-spontaneous-emission pump and signal waves,” accepted for presentation in Optical Fiber Sensors Conference (OFS-23), Santander, Spain, June 2014. Proc. SPIE (2014).
  22. K. Hotate, R. Watanabe, Z. He, and M. Kishi, “Measurement of Brillouin frequency shift distribution in PLC by Brillouin Optical Correlation Domain Analysis,” Proc. of SPIE 8421, 22nd International Conference on Optical Fiber Sensors (OFS-22), Beijing, China, paper 8421CE (2012).
    [CrossRef]
  23. R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
    [CrossRef] [PubMed]
  24. S. Levy, V. Lyubin, M. Klebanov, J. Scheuer, A. Zadok, “Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides,” Opt. Lett. 37(24), 5112–5114 (2012).
    [CrossRef] [PubMed]

2014 (1)

2013 (2)

2012 (5)

2011 (3)

2010 (1)

2008 (1)

K. Hotate, H. Arai, K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE Journal of Control, Measurement, and System Integration 1(4), 271–274 (2008).
[CrossRef]

2006 (1)

2000 (1)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

1996 (1)

1990 (2)

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

Alcon-Camas, M.

Ania-Castañon, J. D.

Antman, Y.

Arai, H.

K. Hotate, H. Arai, K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE Journal of Control, Measurement, and System Integration 1(4), 271–274 (2008).
[CrossRef]

Bao, X.

Chen, L.

Chen, L. A.

X. Bao, L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[CrossRef] [PubMed]

Choi, D. Y.

Corredera, P.

Denisov, A.

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).

Dong, Y.

Eggleton, B. J.

Elooz, D.

Gonzalez-Herraez, M.

Hasegawa, T.

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

He, Z.

Hile, S.

Horiguchi, T.

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Hotate, K.

K. Hotate, “Fiber distributed Brillouin sensing with optical correlation domain techniques,” Opt. Fiber Technol. 19(6), 700–719 (2013).
[CrossRef]

K. Hotate, H. Arai, K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE Journal of Control, Measurement, and System Integration 1(4), 271–274 (2008).
[CrossRef]

K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Klebanov, M.

Kurashima, T.

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

Langer, T.

Levanon, N.

Levy, S.

Li, E.

Luther-Davies, B.

Lyubin, V.

Madden, S. J.

Martin-Lopez, S.

Mcfarlane, H.

Motil, A.

Niklès, M.

Pant, R.

Peled, Y.

Poulton, C. G.

Primerov, N.

Primrov, N.

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).

Robert, P. A.

Rodriguez, F.

Sancho, J.

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[CrossRef] [PubMed]

Scheuer, J.

Song, K. Y.

K. Hotate, H. Arai, K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE Journal of Control, Measurement, and System Integration 1(4), 271–274 (2008).
[CrossRef]

K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

Tateda, M.

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[CrossRef] [PubMed]

Thevenaz, L.

Thévenaz, L.

Tur, M.

Yaron, L.

Zadok, A.

Zhang, H.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

T. Horiguchi, T. Kurashima, M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

IEICE Trans. Electron. (1)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Laser Photon. Rev. (1)

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).

Opt. Express (5)

Opt. Fiber Technol. (1)

K. Hotate, “Fiber distributed Brillouin sensing with optical correlation domain techniques,” Opt. Fiber Technol. 19(6), 700–719 (2013).
[CrossRef]

Opt. Lett. (6)

Sensors (Basel) (1)

X. Bao, L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[CrossRef] [PubMed]

SICE Journal of Control, Measurement, and System Integration (1)

K. Hotate, H. Arai, K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE Journal of Control, Measurement, and System Integration 1(4), 271–274 (2008).
[CrossRef]

Other (6)

J. W. Goodman, Statistical Optics, Wiley Classics Library Edition (John Wiley & Sons, 2000).

R. Cohen, Y. London, Y. Antman, and A. Zadok, “Few millimeter-resolution Brillouin optical correlation domain analysis using amplified-spontaneous-emission pump and signal waves,” accepted for presentation in Optical Fiber Sensors Conference (OFS-23), Santander, Spain, June 2014. Proc. SPIE (2014).

K. Hotate, R. Watanabe, Z. He, and M. Kishi, “Measurement of Brillouin frequency shift distribution in PLC by Brillouin Optical Correlation Domain Analysis,” Proc. of SPIE 8421, 22nd International Conference on Optical Fiber Sensors (OFS-22), Beijing, China, paper 8421CE (2012).
[CrossRef]

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution.,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 87943I (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulated magnitude of the acoustic wave density fluctuations (in normalized units), as a function of position and time along a 8 cm-long fiber section. Both pump and signal waves are drawn from a polarized amplified spontaneous emission source, filtered to a bandwidth of 25 GHz. The acoustic field, and hence the SBS interaction between pump and signal, is confined to a single correlation peak, whose spatial extent of 4 mm corresponds to half the coherence length of the filtered source.

Fig. 2
Fig. 2

Simulated stimulated Brillouin scattering power amplification of a signal wave, as a function of the frequency offset between the central frequencies of the pump and signal waves and the position of their correlation peak along 20 millimeters of a fiber under test. The Brillouin shift of the fiber at room temperature is taken as zero frequency. The Brillouin shift within a 4 millimeter-long segment at the center of the fiber under test was raised by 40 MHz. Both pump and signal waves are drawn from a 25 GHz-wide polarized amplified spontaneous emission source. The signal wave at the output of the fiber under test was filtered to a bandwidth of 9 GHz prior to detection. The simulation indicates a spatial resolution of 4 mm, which corresponds to half the coherence length of the input, 25 GHz-wide signal.

Fig. 3
Fig. 3

Experimental setup for Brillouin optical correlation domain analysis using a broadband amplified spontaneous emission (ASE) source. EDFA: erbium-doped fiber amplifier. Amp. Mod.: amplitude modulator [21].

Fig. 4
Fig. 4

Normalized optical power spectral densities of the pump wave (blue, dash-dotted), input signal wave (red, dashed), and filtered output signal wave (black, solid).

Fig. 5
Fig. 5

(a) Measured peak voltage of the output signal wave, as a function of the frequency offset between pump and signal and the manual position offset of the correlation peak location. A 4 mm-long hot spot was introduced near the center of the scanning range. (b) Reconstructed local Brillouin frequency shift as a function of position, with the hot spot turned on (blue, solid) and off (red, dashed).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q( t,z )=j g 1 0 t exp[ Γ A ( tt' ) ] A p ( t' z v g ) A s * [ t' z v g +θ( z ) ]dt'
Q( z ) ¯ =j g 1 A p0 A s0 * 0 t exp[ Γ A ( tt' ) ] u( t' z v g ) u * [ t' z v g +θ( z ) ] ¯ dt' =j g 1 A p0 A s0 * 0 t exp[ Γ A ( tt' ) ] γ u [ θ( z ) ]dt'=j g 1 A p0 A s0 * Γ A ( ν,z ) γ u [ θ( z ) ]
W( t ) | A s0 | 2 tT t | u( t' L v g ) | 2 dt'
SNR ΔW σ W g 0 | A p0 | 2 Δz T τ c out 1 2 g 0 v g | A p0 | 2 Δ ν in Δ ν out B

Metrics