Abstract

In contemporary optics, the spatial light modulator (SLM) is effectively used as a flexible optoelectronic device playing the key role in a number of experiments of science and technology. Its operation is optimal when using almost monochromatic light but an extremely strong diffractive dispersion occurs when white light is applied. In this paper, the design concepts are proposed resulting in optimization and implementation of a refractive corrector cooperating with the SLM. The corrector maintains the operation of the SLM unchanged for the central wavelength of light and ensures an achromatic dispersion compensation throughout the visible region in applications based on a lens-pattern formation. A significant improvement of the imaging performance of the achromatic SLM was proved by the computer simulation and measurement of the chromatic focal shift and the image contrast of the resolution target.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express 17, 14710–14721 (2009).
    [Crossref] [PubMed]
  2. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
    [Crossref]
  3. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
    [Crossref]
  4. J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
    [Crossref]
  5. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).
    [Crossref] [PubMed]
  6. Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17, 19153–19159 (2009).
    [Crossref]
  7. M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
    [Crossref] [PubMed]
  8. T. Meeser, C. Falldorf, Ch. von Kopylow, and R. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Optical Measurement Systems for Industrial Inspection, Proc. of SPIE 8082, 808206 (2011).
    [Crossref]
  9. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
    [Crossref] [PubMed]
  10. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nature Commun. 4, 2289 (2013).
    [Crossref]
  11. S. Bernet, A. Jesacher, S. Furhaupt, Ch. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
    [Crossref] [PubMed]
  12. R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
    [Crossref] [PubMed]
  13. M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103–9112 (2006).
    [Crossref] [PubMed]
  14. P. Bouchal, J. Kapitán, Radim Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19, 15603–15620 (2011).
    [Crossref] [PubMed]
  15. X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38, 1896–1898 (2013).
    [Crossref] [PubMed]
  16. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011).
    [Crossref]
  17. P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37, 2949–2951 (2012).
    [Crossref] [PubMed]
  18. P. Bouchal and Z. Bouchal, “Concept of coherence aperture and pathways toward white light high-resolution correlation imaging,” New J. Phys. 15, 123002 (2013).
    [Crossref]
  19. R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).
  20. T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [Crossref] [PubMed]
  21. J. Li, Ch. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 1551–1561 (2005).
    [Crossref]
  22. A. Flores, M. R. Wang, and J. J. Yang, “Achromatic hybrid refractive-diffractive lens with extended depth of focus,” Appl. Opt. 43, 5618–5630 (2004).
    [Crossref] [PubMed]
  23. N. Davidson, A. Friesem, and E. Hasman, “Analytic design of hybrid diffractiverefractive achromats,” Appl. Opt. 32, 4770–4774 (1993).
    [Crossref] [PubMed]
  24. E. Tajahuerce, V. Climent, J. Lancis, M. Fernanández-Alonso, and P. Andrés, “Achromatic Fourier Transforming Properties of a Separated Diffractive Lens Doublet: Theory and Experiment,” Appl. Opt. 37, 6164–6173 (1998).
  25. V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
    [Crossref]
  26. D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
    [Crossref] [PubMed]
  27. N. Davidson, R. Duer, A. A. Friesem, and E. Hasman, “Blazed holographic gratings for polychromatic and multidirectional incidence light,” J. Opt. Soc. Am. A 9, 1196–1199 (1992).
    [Crossref]

2013 (3)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nature Commun. 4, 2289 (2013).
[Crossref]

X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38, 1896–1898 (2013).
[Crossref] [PubMed]

P. Bouchal and Z. Bouchal, “Concept of coherence aperture and pathways toward white light high-resolution correlation imaging,” New J. Phys. 15, 123002 (2013).
[Crossref]

2012 (2)

P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37, 2949–2951 (2012).
[Crossref] [PubMed]

R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
[Crossref] [PubMed]

2011 (5)

P. Bouchal, J. Kapitán, Radim Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19, 15603–15620 (2011).
[Crossref] [PubMed]

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011).
[Crossref]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
[Crossref] [PubMed]

T. Meeser, C. Falldorf, Ch. von Kopylow, and R. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Optical Measurement Systems for Industrial Inspection, Proc. of SPIE 8082, 808206 (2011).
[Crossref]

2009 (2)

B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express 17, 14710–14721 (2009).
[Crossref] [PubMed]

Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17, 19153–19159 (2009).
[Crossref]

2007 (2)

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
[Crossref] [PubMed]

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

2006 (3)

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).
[Crossref] [PubMed]

M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103–9112 (2006).
[Crossref] [PubMed]

S. Bernet, A. Jesacher, S. Furhaupt, Ch. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

2005 (1)

J. Li, Ch. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 1551–1561 (2005).
[Crossref]

2004 (1)

A. Flores, M. R. Wang, and J. J. Yang, “Achromatic hybrid refractive-diffractive lens with extended depth of focus,” Appl. Opt. 43, 5618–5630 (2004).
[Crossref] [PubMed]

1999 (1)

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[Crossref]

1998 (1)

E. Tajahuerce, V. Climent, J. Lancis, M. Fernanández-Alonso, and P. Andrés, “Achromatic Fourier Transforming Properties of a Separated Diffractive Lens Doublet: Theory and Experiment,” Appl. Opt. 37, 6164–6173 (1998).

1997 (1)

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[Crossref]

1993 (1)

N. Davidson, A. Friesem, and E. Hasman, “Analytic design of hybrid diffractiverefractive achromats,” Appl. Opt. 32, 4770–4774 (1993).
[Crossref] [PubMed]

1992 (2)

D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
[Crossref] [PubMed]

N. Davidson, R. Duer, A. A. Friesem, and E. Hasman, “Blazed holographic gratings for polychromatic and multidirectional incidence light,” J. Opt. Soc. Am. A 9, 1196–1199 (1992).
[Crossref]

1988 (1)

T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
[Crossref] [PubMed]

Andrés, P.

E. Tajahuerce, V. Climent, J. Lancis, M. Fernanández-Alonso, and P. Andrés, “Achromatic Fourier Transforming Properties of a Separated Diffractive Lens Doublet: Theory and Experiment,” Appl. Opt. 37, 6164–6173 (1998).

Ares, J

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Arines, J

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Badieirostami, M.

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
[Crossref] [PubMed]

Bar, S

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Bergmann, R.

T. Meeser, C. Falldorf, Ch. von Kopylow, and R. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Optical Measurement Systems for Industrial Inspection, Proc. of SPIE 8082, 808206 (2011).
[Crossref]

Bernet, S.

R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
[Crossref] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

S. Bernet, A. Jesacher, S. Furhaupt, Ch. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Beversluis, M. R.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).
[Crossref] [PubMed]

Bouchal, P.

P. Bouchal and Z. Bouchal, “Concept of coherence aperture and pathways toward white light high-resolution correlation imaging,” New J. Phys. 15, 123002 (2013).
[Crossref]

P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37, 2949–2951 (2012).
[Crossref] [PubMed]

P. Bouchal, J. Kapitán, Radim Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19, 15603–15620 (2011).
[Crossref] [PubMed]

Bouchal, Z.

P. Bouchal and Z. Bouchal, “Concept of coherence aperture and pathways toward white light high-resolution correlation imaging,” New J. Phys. 15, 123002 (2013).
[Crossref]

P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37, 2949–2951 (2012).
[Crossref] [PubMed]

P. Bouchal, J. Kapitán, Radim Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19, 15603–15620 (2011).
[Crossref] [PubMed]

Brooker, G.

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011).
[Crossref]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
[Crossref] [PubMed]

Buralli, D. A.

D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
[Crossref] [PubMed]

Burger, L.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nature Commun. 4, 2289 (2013).
[Crossref]

Chang, B. J.

B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express 17, 14710–14721 (2009).
[Crossref] [PubMed]

Chang, Y. C.

B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express 17, 14710–14721 (2009).
[Crossref] [PubMed]

Chiang, S. Y.

B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express 17, 14710–14721 (2009).
[Crossref] [PubMed]

Chmelík, Radim

P. Bouchal, J. Kapitán, Radim Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19, 15603–15620 (2011).
[Crossref] [PubMed]

Chou, L. J.

B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express 17, 14710–14721 (2009).
[Crossref] [PubMed]

Climent, V

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Climent, V.

E. Tajahuerce, V. Climent, J. Lancis, M. Fernanández-Alonso, and P. Andrés, “Achromatic Fourier Transforming Properties of a Separated Diffractive Lens Doublet: Theory and Experiment,” Appl. Opt. 37, 6164–6173 (1998).

Davidson, N.

N. Davidson, A. Friesem, and E. Hasman, “Analytic design of hybrid diffractiverefractive achromats,” Appl. Opt. 32, 4770–4774 (1993).
[Crossref] [PubMed]

N. Davidson, R. Duer, A. A. Friesem, and E. Hasman, “Blazed holographic gratings for polychromatic and multidirectional incidence light,” J. Opt. Soc. Am. A 9, 1196–1199 (1992).
[Crossref]

Duer, R.

N. Davidson, R. Duer, A. A. Friesem, and E. Hasman, “Blazed holographic gratings for polychromatic and multidirectional incidence light,” J. Opt. Soc. Am. A 9, 1196–1199 (1992).
[Crossref]

Durán, V

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Esumi, Y.

Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17, 19153–19159 (2009).
[Crossref]

Falldorf, C.

T. Meeser, C. Falldorf, Ch. von Kopylow, and R. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Optical Measurement Systems for Industrial Inspection, Proc. of SPIE 8082, 808206 (2011).
[Crossref]

Fernanández-Alonso, M.

E. Tajahuerce, V. Climent, J. Lancis, M. Fernanández-Alonso, and P. Andrés, “Achromatic Fourier Transforming Properties of a Separated Diffractive Lens Doublet: Theory and Experiment,” Appl. Opt. 37, 6164–6173 (1998).

Flores, A.

A. Flores, M. R. Wang, and J. J. Yang, “Achromatic hybrid refractive-diffractive lens with extended depth of focus,” Appl. Opt. 43, 5618–5630 (2004).
[Crossref] [PubMed]

Forbes, A.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nature Commun. 4, 2289 (2013).
[Crossref]

Friesem, A.

N. Davidson, A. Friesem, and E. Hasman, “Analytic design of hybrid diffractiverefractive achromats,” Appl. Opt. 32, 4770–4774 (1993).
[Crossref] [PubMed]

Friesem, A. A.

N. Davidson, R. Duer, A. A. Friesem, and E. Hasman, “Blazed holographic gratings for polychromatic and multidirectional incidence light,” J. Opt. Soc. Am. A 9, 1196–1199 (1992).
[Crossref]

Fu, L.

X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38, 1896–1898 (2013).
[Crossref] [PubMed]

Furhaupt, S.

S. Bernet, A. Jesacher, S. Furhaupt, Ch. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Gauza, S.

J. Li, Ch. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 1551–1561 (2005).
[Crossref]

George, N.

T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
[Crossref] [PubMed]

Haist, T.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[Crossref]

Hasman, E.

N. Davidson, A. Friesem, and E. Hasman, “Analytic design of hybrid diffractiverefractive achromats,” Appl. Opt. 32, 4770–4774 (1993).
[Crossref] [PubMed]

N. Davidson, R. Duer, A. A. Friesem, and E. Hasman, “Blazed holographic gratings for polychromatic and multidirectional incidence light,” J. Opt. Soc. Am. A 9, 1196–1199 (1992).
[Crossref]

Jaroszewicz, Z

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

S. Bernet, A. Jesacher, S. Furhaupt, Ch. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Johnson, R. B.

R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).

Kabir, M. D.

Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17, 19153–19159 (2009).
[Crossref]

Kannari, F.

Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17, 19153–19159 (2009).
[Crossref]

Kapitán, J.

P. Bouchal, J. Kapitán, Radim Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19, 15603–15620 (2011).
[Crossref] [PubMed]

Kingslake, R.

R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).

Lai, X.

X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38, 1896–1898 (2013).
[Crossref] [PubMed]

Lancis, J

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Lancis, J.

E. Tajahuerce, V. Climent, J. Lancis, M. Fernanández-Alonso, and P. Andrés, “Achromatic Fourier Transforming Properties of a Separated Diffractive Lens Doublet: Theory and Experiment,” Appl. Opt. 37, 6164–6173 (1998).

Lee, S. F.

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
[Crossref] [PubMed]

Lew, M. D.

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
[Crossref] [PubMed]

Li, J.

J. Li, Ch. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 1551–1561 (2005).
[Crossref]

Litvin, I.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nature Commun. 4, 2289 (2013).
[Crossref]

Lu, R.

J. Li, Ch. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 1551–1561 (2005).
[Crossref]

Lv, X.

X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38, 1896–1898 (2013).
[Crossref] [PubMed]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

Maurer, Ch.

S. Bernet, A. Jesacher, S. Furhaupt, Ch. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Meeser, T.

T. Meeser, C. Falldorf, Ch. von Kopylow, and R. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Optical Measurement Systems for Industrial Inspection, Proc. of SPIE 8082, 808206 (2011).
[Crossref]

Millán, M. S.

M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103–9112 (2006).
[Crossref] [PubMed]

Moerner, W. E.

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
[Crossref] [PubMed]

Moreno, V.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[Crossref]

Morris, G. M.

D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
[Crossref] [PubMed]

Ngcobo, S.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nature Commun. 4, 2289 (2013).
[Crossref]

Novotny, L.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).
[Crossref] [PubMed]

Otón, J.

M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103–9112 (2006).
[Crossref] [PubMed]

Pérez-Cabré, E.

M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103–9112 (2006).
[Crossref] [PubMed]

Prado, P

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Reicherter, M.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[Crossref]

Ritsch-Marte, M.

R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
[Crossref] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

S. Bernet, A. Jesacher, S. Furhaupt, Ch. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

Román, J. F.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[Crossref]

Rosen, J.

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011).
[Crossref]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
[Crossref] [PubMed]

Salgueiro, J. R.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[Crossref]

Siegel, N.

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011).
[Crossref]

Steiger, R.

R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
[Crossref] [PubMed]

Stone, T.

T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
[Crossref] [PubMed]

Stranick, S. J.

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).
[Crossref] [PubMed]

Tajahuerce, E

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

Tajahuerce, E.

E. Tajahuerce, V. Climent, J. Lancis, M. Fernanández-Alonso, and P. Andrés, “Achromatic Fourier Transforming Properties of a Separated Diffractive Lens Doublet: Theory and Experiment,” Appl. Opt. 37, 6164–6173 (1998).

Tiziani, H. J.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[Crossref]

von Kopylow, Ch.

T. Meeser, C. Falldorf, Ch. von Kopylow, and R. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Optical Measurement Systems for Industrial Inspection, Proc. of SPIE 8082, 808206 (2011).
[Crossref]

Wagemann, E. U.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[Crossref]

Wang, M. R.

A. Flores, M. R. Wang, and J. J. Yang, “Achromatic hybrid refractive-diffractive lens with extended depth of focus,” Appl. Opt. 43, 5618–5630 (2004).
[Crossref] [PubMed]

Wen, Ch. H.

J. Li, Ch. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 1551–1561 (2005).
[Crossref]

Wu, S. T.

J. Li, Ch. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 1551–1561 (2005).
[Crossref]

Yang, J. J.

A. Flores, M. R. Wang, and J. J. Yang, “Achromatic hybrid refractive-diffractive lens with extended depth of focus,” Appl. Opt. 43, 5618–5630 (2004).
[Crossref] [PubMed]

Yuan, J.

X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38, 1896–1898 (2013).
[Crossref] [PubMed]

Zeng, S.

X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38, 1896–1898 (2013).
[Crossref] [PubMed]

Am. J. Phys. (1)

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[Crossref]

Appl. Opt. (5)

D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
[Crossref] [PubMed]

T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
[Crossref] [PubMed]

A. Flores, M. R. Wang, and J. J. Yang, “Achromatic hybrid refractive-diffractive lens with extended depth of focus,” Appl. Opt. 43, 5618–5630 (2004).
[Crossref] [PubMed]

N. Davidson, A. Friesem, and E. Hasman, “Analytic design of hybrid diffractiverefractive achromats,” Appl. Opt. 32, 4770–4774 (1993).
[Crossref] [PubMed]

E. Tajahuerce, V. Climent, J. Lancis, M. Fernanández-Alonso, and P. Andrés, “Achromatic Fourier Transforming Properties of a Separated Diffractive Lens Doublet: Theory and Experiment,” Appl. Opt. 37, 6164–6173 (1998).

J. Display Technol. (1)

J. Li, Ch. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 1551–1561 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

N. Davidson, R. Duer, A. A. Friesem, and E. Hasman, “Blazed holographic gratings for polychromatic and multidirectional incidence light,” J. Opt. Soc. Am. A 9, 1196–1199 (1992).
[Crossref]

Laser Photon. Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

Nature Commun. (1)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nature Commun. 4, 2289 (2013).
[Crossref]

New J. Phys. (1)

P. Bouchal and Z. Bouchal, “Concept of coherence aperture and pathways toward white light high-resolution correlation imaging,” New J. Phys. 15, 123002 (2013).
[Crossref]

Opt. Express (9)

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19, 26249–26268 (2011).
[Crossref]

S. Bernet, A. Jesacher, S. Furhaupt, Ch. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).
[Crossref] [PubMed]

R. Steiger, S. Bernet, and M. Ritsch-Marte, “SLM-based off-axis Fourier filtering in microscopy with white light illumination,” Opt. Express 20, 15377–15384 (2012).
[Crossref] [PubMed]

M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103–9112 (2006).
[Crossref] [PubMed]

P. Bouchal, J. Kapitán, Radim Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express 19, 15603–15620 (2011).
[Crossref] [PubMed]

B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express 17, 14710–14721 (2009).
[Crossref] [PubMed]

J Arines, V Durán, Z Jaroszewicz, J Ares, E Tajahuerce, P Prado, J Lancis, S Bar, and V Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 23, 15287–15292 (2007).
[Crossref]

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).
[Crossref] [PubMed]

Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17, 19153–19159 (2009).
[Crossref]

Opt. Lett. (5)

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
[Crossref] [PubMed]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[Crossref]

X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett. 38, 1896–1898 (2013).
[Crossref] [PubMed]

P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37, 2949–2951 (2012).
[Crossref] [PubMed]

Optical Measurement Systems for Industrial Inspection, Proc. of SPIE (1)

T. Meeser, C. Falldorf, Ch. von Kopylow, and R. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Optical Measurement Systems for Industrial Inspection, Proc. of SPIE 8082, 808206 (2011).
[Crossref]

Other (1)

R. Kingslake and R. B. Johnson, Lens Design Fundamentals (Elsevier, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Concept of the dispersion compensation of the SLM: (a) material dispersion of the afocal refractive corrector, (b) diffractive dispersion of the SLM, (c) achromatic correction of the SLM.

Fig. 2
Fig. 2

Combinations of the Abbe numbers of the corrector lenses providing an achromatic correction of the SLM for different values of the design parameter κ.

Fig. 3
Fig. 3

Experimental setup for measurement of the chromatic focal shift of the SLM and the secondary spectrum of the corrected SLM by means of the S-H sensor: L ... laser, MO ... microscope objective, AL ... achromatic lens, AC ... three-lens afocal corrector, BS ... beam splitter, P ... polarizer.

Fig. 4
Fig. 4

The measured and calculated chromatic focal shift for the uncorrected SLM with extremely strong diffractive dispersion (blue) and the achromatic correction of the SLM carried out by a three-lens afocal system (red).

Fig. 5
Fig. 5

Testing of the imaging performance of the uncorrected and achromatic SLM by means of the USAF resolution target: HL ... halogen lamp, HM ... hot mirror, GF ... green filter, ... LG light guide, L ... laser, MO ... microscope objective, BS ... beam splitter, AL ... achromatic lens, AC ... afocal corrector, P ... polarizer, ID ... iris diaphragm, C ... CMOS camera.

Fig. 6
Fig. 6

Measured contrast (10, 20 and 40 cycles/mm) and the calculated modulation transfer function for the imaging implemented by the uncorrected and achromatic SLM: (a) NA=0.02, (b) NA=0.06.

Fig. 7
Fig. 7

Snapshots of the USAF resolution target taken in the broadband light (532 nm, FWHM 80 nm): uncorrected SLM (left), achromatic SLM (right).

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

d K d λ | λ 0 = K ( λ 0 ) [ n ( λ 0 ) 1 ] d n d λ | λ 0 .
δ K ( λ 1 , λ 2 ) = K ( λ 0 ) V M ,
V M = n ( λ 0 ) 1 n ( λ 1 ) n ( λ 2 ) .
t = exp [ i Φ ( r ) ] , where Φ ( r ) = π λ 0 | r | 2 f 0 .
ψ ( r , λ ) exp ( i π | r | 2 λ z ) FT { exp [ i π | r | 2 ( 1 λ 0 f 0 1 λ z ) ] } ,
z f ( λ ) = λ 0 λ f 0 ,
δ K ( λ 1 , λ 2 ) = K ( λ 0 ) V D ,
V D = λ 0 λ 1 λ 2 .
t ( λ ) = exp [ i Φ ( r , λ ) ] , where Φ ( r , λ ) = π λ 0 n ( λ ) n ( λ 0 ) | r | 2 f 0 ,
f ( λ ) = n ( λ 0 ) n ( λ ) λ 0 λ f 0 .
δ K ( λ 1 , λ 2 ) = K ( λ 0 ) V M D ,
V M D = Λ 0 Λ 1 Λ 2 ,
1 V 1 1 V 2 + 1 κ V D = 0 ,
κ = f D ( λ 0 ) f L ( λ 0 ) ,
δ K ( λ 0 , λ 1 ) = 1 f ( λ 0 ) 1 f ( λ 1 ) δ f ( λ 0 , λ 1 ) f 2 ( λ 0 ) .
δ f ( λ 0 , λ 1 ) = f 2 ( λ 0 ) f L ( λ 0 ) [ P 1 V 1 P 2 V 2 + P D κ V D ] ,
P j = n j ( λ 1 ) n j ( λ 0 ) n j ( λ 1 ) n j ( λ 2 ) , j = 1 , 2 ,
P D = λ 1 λ 0 λ 1 λ 2 ,
δ f ( λ 0 , λ 1 ) = f 2 ( λ 0 ) f L ( λ 0 ) [ P 1 P D V 1 P 2 P D V 2 ] .
ν m = 1 2 π Φ ( r ) | r | | | r | = R ,
f 2 Δ r R λ ,
η m ( λ ) = sinc 2 [ π ( λ 0 λ m ) ] ,
η ¯ m = 1 λ 2 λ 1 λ 1 λ 2 η m ( λ ) d λ .

Metrics