Abstract

High index Er-Yb codoped tellurite spheres with diameter of 9 μm and good sphericity were fabricated using a CO2 laser. Upconversion modulated whispering gallery modes with a quality factor of 45,000 were observed in the sphere dipped in methanol. Refractometric sensing with detection sensitivity of 7.7 nm/RIU was demonstrated using a 9 μm diameter sphere. Such high index spheres have the potential to be used for nanoparticle sensing and mid-IR frequency conversion.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).
  2. B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
    [Crossref]
  3. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [Crossref] [PubMed]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  5. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
    [Crossref]
  6. C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
    [Crossref] [PubMed]
  7. P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
    [Crossref]
  8. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
    [Crossref]
  9. P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
    [Crossref] [PubMed]
  10. O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
    [Crossref] [PubMed]
  11. C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
    [Crossref]
  12. F. Vanier, M. Rochette, and Y.-A. Peter, “Raman scattering emission in high Q factor As2S3 microspheres,” CELO 2013, CM1L.8, San Jose, USA.
  13. E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19(4), 3455–3463 (2011).
    [Crossref] [PubMed]
  14. M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
    [Crossref]
  15. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  16. A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
    [Crossref]
  17. J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
    [Crossref]
  18. X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
    [Crossref]
  19. S. D. Conzone, U. O. Häfeli, D. E. Day, and G. J. Ehrhardt, “Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy,” J. Biomed. Mater. Res. 42(4), 617–625 (1998).
    [Crossref] [PubMed]
  20. T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3 + -dopedd tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
    [Crossref]
  21. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
    [Crossref]
  22. M. Oxborrow, “Traceable 2D finite element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [Crossref]
  23. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20(9), 1937–1946 (2003).
    [Crossref]
  24. A. François, K. J. Rowland, and T. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99(14), 141111 (2011).
    [Crossref]
  25. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
    [Crossref]
  26. A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3–4), 561–567 (2008).
    [Crossref]
  27. T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: A new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107(10), 103105 (2010).
    [Crossref]
  28. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4), 267–291 (2012).
    [Crossref]
  29. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
    [Crossref]
  30. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  31. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
    [Crossref]
  32. N. Uchida and N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. 4(8), 1132–1138 (1986).
    [Crossref]
  33. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]

2013 (1)

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

2012 (6)

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
[Crossref]

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3 + -dopedd tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4), 267–291 (2012).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

2011 (7)

A. François, K. J. Rowland, and T. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99(14), 141111 (2011).
[Crossref]

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19(4), 3455–3463 (2011).
[Crossref] [PubMed]

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

2010 (1)

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: A new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107(10), 103105 (2010).
[Crossref]

2008 (5)

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3–4), 561–567 (2008).
[Crossref]

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

M. Oxborrow, “Traceable 2D finite element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

2005 (3)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

2003 (2)

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20(9), 1937–1946 (2003).
[Crossref]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
[Crossref]

1999 (1)

B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[Crossref]

1998 (1)

S. D. Conzone, U. O. Häfeli, D. E. Day, and G. J. Ehrhardt, “Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy,” J. Biomed. Mater. Res. 42(4), 617–625 (1998).
[Crossref] [PubMed]

1996 (1)

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

1994 (2)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

1986 (1)

N. Uchida and N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. 4(8), 1132–1138 (1986).
[Crossref]

Andreakou, P.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Arnold, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20(9), 1937–1946 (2003).
[Crossref]

Astratov, V. N.

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

Ballato, J.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

Benson, O.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

Berthereau, A.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Bian, S. N.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

Boyd, K.

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
[Crossref]

Brambilla, G.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
[Crossref]

Canioni, L.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Carnegie, D.

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

Conti, G. N.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).

Conzone, S. D.

S. D. Conzone, U. O. Häfeli, D. E. Day, and G. J. Ehrhardt, “Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy,” J. Biomed. Mater. Res. 42(4), 617–625 (1998).
[Crossref] [PubMed]

Couzi, M.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Dahint, R.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3–4), 561–567 (2008).
[Crossref]

Dantham, V. R.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Darafsheh, A.

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

Das, N.

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: A new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107(10), 103105 (2010).
[Crossref]

Day, D. E.

S. D. Conzone, U. O. Häfeli, D. E. Day, and G. J. Ehrhardt, “Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy,” J. Biomed. Mater. Res. 42(4), 617–625 (1998).
[Crossref] [PubMed]

Dhar, A.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Ding, M.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

Ducasse, A.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).

Dupuis, C.

B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[Crossref]

Ebendorff-Heidepriem, H.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
[Crossref]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
[Crossref]

Eggleton, B. J.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

Ehrhardt, G. J.

S. D. Conzone, U. O. Häfeli, D. E. Day, and G. J. Ehrhardt, “Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy,” J. Biomed. Mater. Res. 42(4), 617–625 (1998).
[Crossref] [PubMed]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Farrell, G.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Feng, X.

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Fenollosa, R.

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19(4), 3455–3463 (2011).
[Crossref] [PubMed]

Feron, P.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).

Ferrari, M.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).

Foy, P.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

François, A.

A. François, K. J. Rowland, and T. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99(14), 141111 (2011).
[Crossref]

Gayral, B.

B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[Crossref]

Gerard, J. M.

B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[Crossref]

Gorodetsky, M. L.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

Grillet, C.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

Grivas, C.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Häfeli, U. O.

S. D. Conzone, U. O. Häfeli, D. E. Day, and G. J. Ehrhardt, “Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy,” J. Biomed. Mater. Res. 42(4), 617–625 (1998).
[Crossref] [PubMed]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Hawkins, T.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

Himmelhaus, M.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3–4), 561–567 (2008).
[Crossref]

Holler, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Ilchenko, V. S.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

Ioppolo, T.

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: A new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107(10), 103105 (2010).
[Crossref]

Jiang, S.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Kimble, H. J.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Kishi, T.

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3 + -dopedd tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

Kolchenko, V.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Kumagai, T.

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3 + -dopedd tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

Kuwata-Gonokami, M.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Lagoudakis, P.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Lancaster, D. G.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
[Crossref]

Le Flem, G.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Le Luyer, Y.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Lee, T.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Lemaitre, A.

B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[Crossref]

Li, C.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Li, Y.

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

Liu, F. C.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3–4), 561–567 (2008).
[Crossref]

Loh, W.

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Magi, E. C.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

Manin, L.

B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[Crossref]

Manna, L.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Meseguer, F.

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19(4), 3455–3463 (2011).
[Crossref] [PubMed]

Monro, T.

A. François, K. J. Rowland, and T. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99(14), 141111 (2011).
[Crossref]

Monro, T. M.

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
[Crossref]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
[Crossref]

Mori, A.

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

Munch, J.

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
[Crossref]

Oermann, M. R.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
[Crossref]

Olazcuaga, R.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Ottaway, D. J.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
[Crossref]

Ötügen, M. V.

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: A new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107(10), 103105 (2010).
[Crossref]

Oxborrow, M.

M. Oxborrow, “Traceable 2D finite element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Pelouard, J. L.

B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[Crossref]

Peng, X.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Peyghambarian, N.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Qua, T.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Rafailov, E.

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

Righini, G. C.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).

Ristic, D.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).

Rowland, K. J.

A. François, K. J. Rowland, and T. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99(14), 141111 (2011).
[Crossref]

Sahu, J.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

Sarger, L.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Savchenkov, A. A.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

Segonds, P.

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Semenova, Y.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Senthil Murugan, G.

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Shibata, S.

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3 + -dopedd tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Song, F.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Sumetsky, M.

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

Svitelskiy, O.

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

Teraoka, I.

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20(9), 1937–1946 (2003).
[Crossref]

Uchida, N.

N. Uchida and N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. 4(8), 1132–1138 (1986).
[Crossref]

Uesugi, N.

N. Uchida and N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. 4(8), 1132–1138 (1986).
[Crossref]

Veitch, P. J.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Vollmer, F.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4), 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20(9), 1937–1946 (2003).
[Crossref]

Wan, Z.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, P.

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Ward, J.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

Weller, A.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3–4), 561–567 (2008).
[Crossref]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Wilkinson, J. M.

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Wu, J.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Wu, Q.

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Xifré-Pérez, E.

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19(4), 3455–3463 (2011).
[Crossref] [PubMed]

Yang, L.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4), 267–291 (2012).
[Crossref]

Yano, T.

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3 + -dopedd tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

AIP Adv. (1)

T. Kishi, T. Kumagai, T. Yano, and S. Shibata, “On-chip fabrication of air-bubble-containing Nd3 + -dopedd tellurite glass microsphere for laser emission,” AIP Adv. 2(4), 042169 (2012).
[Crossref]

Appl. Phys. B (1)

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3–4), 561–567 (2008).
[Crossref]

Appl. Phys. Lett. (7)

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

A. François, K. J. Rowland, and T. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99(14), 141111 (2011).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75(13), 1908–1910 (1999).
[Crossref]

P. Wang, G. Senthil Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. M. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

IEEE Photon. Lett. (1)

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber laser,” IEEE Photon. Lett. 24(7), 578–580 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2D finite element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

J. Appl. Phys. (1)

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: A new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107(10), 103105 (2010).
[Crossref]

J. Biomed. Mater. Res. (1)

S. D. Conzone, U. O. Häfeli, D. E. Day, and G. J. Ehrhardt, “Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy,” J. Biomed. Mater. Res. 42(4), 617–625 (1998).
[Crossref] [PubMed]

J. Ceram. Soc. Jpn. (1)

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

J. Lightwave Technol. (1)

N. Uchida and N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. 4(8), 1132–1138 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20(9), 1937–1946 (2003).
[Crossref]

Laser Photonics Rev. (1)

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

Mater. Res. Bull. (1)

A. Berthereau, Y. Le Luyer, R. Olazcuaga, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Nonlinear optical properties of some tellurium (IV) oxide glasses,” Mater. Res. Bull. 29(9), 933–941 (1994).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4), 267–291 (2012).
[Crossref]

Nat. Commun. (1)

C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, and P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nat. Commun. 4, 2376 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Opt. Eng. (1)

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Opt. Express (1)

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19(4), 3455–3463 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37(4), 728–730 (2012).
[Crossref] [PubMed]

O. Svitelskiy, Y. Li, A. Darafsheh, M. Sumetsky, D. Carnegie, E. Rafailov, and V. N. Astratov, “Fiber coupling to BaTiO3 glass microspheres in an aqueous environment,” Opt. Lett. 36(15), 2862–2864 (2011).
[Crossref] [PubMed]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Opt. Mater. Express (1)

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2(8), 1101–1110 (2012).
[Crossref]

Phys. Rev. A (1)

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67(3), 033806 (2003).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Riv. Nuovo Cim. (1)

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, and D. Ristic, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34, 435–488 (2011).

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (1)

F. Vanier, M. Rochette, and Y.-A. Peter, “Raman scattering emission in high Q factor As2S3 microspheres,” CELO 2013, CM1L.8, San Jose, USA.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Er-Yb codoped spheres. a and b made using a hot filament with diameters of 39 μm and 14 μm respectively. c and d made using a CO2 laser with diameters of 36 μm and 7.5 μm, respectively. The scale bars are 5 μm.

Fig. 2
Fig. 2

Steps a→d taken in the CO2 laser fabrication of optical microspheres from an optical fiber of outer diameter df, suspended vertically from a v-groove mount. (a) A spot size of 2ω1 of the laser beam was used to taper the optical fiber to a diameter dt1 by using the weight of the fiber of length x1 below the heated zone, provided the downward force was greater than the surface tension of the fiber. (b) A spot size of 2ω2 (where ω12), was then used to further taper the region to a diameter dt2. (c) The CO2 laser cut the region of diameter dt2, and the beam was then aligned at a length x2 from the cut section using the alignment HeNe Laser. The section was then irradiated with a spot size of 2ω3 giving (d) a microsphere of diameter ds.

Fig. 3
Fig. 3

a. AFM image of the surface of a microsphere fabricated using a CO2 laser; b. Experimental setup to measure WGMs of the microspheres. c, d and e are WGMs modulated upconversion spectrum of the Er-Yb codoped spheres in air with 33 μm, 30 μm and 9.4 μm diameter, respectively. f is the WGM spectrum of the 9.4 μm diameter sphere dipped in methanol. The inserted resonance peak at 670.18nm displays Q of 45,000. The integration time for these fluorescence spectra was 1s. The sphere in c was fabricated using a hot filament, and those in d, e and f were made using a CO2 laser.

Fig. 4
Fig. 4

Resonance shift of the Er-Yb doped spheres in solvents. a. the spectrum of the 9 μm spheres in IPA and methanol, respectively. The mode order numbers are assigned by numerical calculation using the code provided by Oxborrow [22]. b. dependence of the resonance shift δλ on refractive index change δn for the 9 μm tellurite sphere. The solid line is calculated wavelength shift δλ, and the separate points are measured values.

Fig. 5
Fig. 5

Predicted sensitivity of the refractometric sensing for the first order TM modes of the microspheres made from tellurite, silica and polystyrene for different sphere radii. The excitation wavelength is 606 nm except the red point at 523.5 nm for the tellurite sphere.

Fig. 6
Fig. 6

Calculated wavelength shift δλ (solid lines) as a function of the radii of the spheres for single nanoparticles adsorbed on the surface of the spheres made from (a) tellurite and (b) silica glass. The green dashed lines are the detection limits when a tunable DFB laser and a low noise detector are used for characterisation, and the dark violet dash-dot lines are the RMS noise. The radii of the single nanoparticles are labeled next to their corresponding shift curves on the right hand side. The excitation wavelength is 633 nm unless otherwise stated in the figures.

Fig. 7
Fig. 7

Q/ V mode for tellurite and silica microspheres at different wavelengths: (a). 633 nm and (b). 1.9 μm. The losses of the silica glasses used for calculation are the measured values. The losses of tellurite glasses used for calculation in (a) include the currently achieved 0.5 dB/m in-house (solid line) and assumed 10 times improvement in loss (dashed line, achieved by Mori group [31]); in (b) 20 dB/km are assumed at λ = 1.9 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ λ FSR = λ 2 / 2π n s R,
δλ= λ 2 2πa n a n s 2 ( n s 2 n a 2 ) 3/2 [ (2 n s 2 n a 2 ) ζ l 2 1/3 2 n s 6 + n a 2 n s 4 4 n a 4 n s 2 +2 n a 6 n s 2 ( n s 2 n a 2 ) υ 2/3 ],
δλ/λD a 3 e a /L /( R 5/2 λ 1/2 ),
D=2 n a 2 2 n s ( n np 2 n a 2 )/( n s 2 n a 2 )( n np 2 +2 n a 2 ),

Metrics