Abstract

We fabricated and tested an unstrained GaAs single-quantum-well microlaser which has a two-dimensional cavity shape known as the Penrose unilluminable room. The cavity exhibits quasi-one-dimensional modes, namely axial, diamond-shaped, and V-shaped modes. In contrast to previous observations of TE-polarized emission in GaAs microlasers, we observed TM-polarized emission. We explain this observation as being the result of lasing of the diamond-shaped modes whose incident angle at the cavity interface is very close to the Brewster angle.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Morphological dependence of lasing modes in two-dimensional quasi-stadium laser diodes

Takehiro Fukushima, Takahisa Harayama, Tomohiro Miyasaka, and Pablo O. Vaccaro
J. Opt. Soc. Am. B 21(5) 935-943 (2004)

Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes

Takehiro Fukushima, Satoshi Sunada, Takahisa Harayama, Koichiro Sakaguchi, and Yasunori Tokuda
Appl. Opt. 51(14) 2515-2520 (2012)

Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers

Muhan Choi, Susumu Shinohara, and Takahisa Harayama
Opt. Express 16(22) 17554-17559 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5(2), 247–271 (2011).
    [Crossref]
  2. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
    [Crossref]
  3. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
    [Crossref] [PubMed]
  4. Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
    [Crossref]
  5. C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
    [Crossref]
  6. T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE Sel. Top. Quantum Electron. 10(5), 1039–1051 (2004).
    [Crossref]
  7. T. Fukushima, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes,” Appl. Opt. 51(14), 2515–2520 (2012).
    [Crossref] [PubMed]
  8. G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
    [Crossref]
  9. C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
    [Crossref]
  10. M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
    [Crossref] [PubMed]
  11. T. Fukushima, unpublished.
  12. H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry (Springer-Verlag, 1991).
  13. E. W. Weisstein, “Illumination problem,” MathWorld-A Wolfram Web Resource ( http://mathworld.wolfram.com/IlluminationProblem.html ).
  14. T. Fukushima, S. Shinohara, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Ray dynamical simulation of Penrose unilluminable room cavity,” in Frontiers in Optics (FiO) and Laser Sicence (LS) XXIX Meetings (Optical Society of America, Washington, DC, 2013), JW3A.19.
  15. E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
    [Crossref]

2012 (1)

T. Fukushima, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes,” Appl. Opt. 51(14), 2515–2520 (2012).
[Crossref] [PubMed]

2011 (1)

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5(2), 247–271 (2011).
[Crossref]

2010 (1)

M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
[Crossref] [PubMed]

2009 (2)

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
[Crossref]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

2008 (1)

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

2004 (1)

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE Sel. Top. Quantum Electron. 10(5), 1039–1051 (2004).
[Crossref]

2003 (1)

G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

1998 (1)

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

1993 (1)

E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
[Crossref]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Avrutin, E. A.

E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
[Crossref]

Belkin, M. A.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Cao, H.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
[Crossref]

Capasso, F.

M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
[Crossref] [PubMed]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Chang, R. K.

G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Chebunina, I. E.

E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
[Crossref]

Chern, G. D.

G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Cho, A. Y.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Cho, J.

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

Diehl, L.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Edamura, T.

M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
[Crossref] [PubMed]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Eliachevitch, I. A.

E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
[Crossref]

Faist, J.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Fang, W.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
[Crossref]

Fukushima, T.

T. Fukushima, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes,” Appl. Opt. 51(14), 2515–2520 (2012).
[Crossref] [PubMed]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE Sel. Top. Quantum Electron. 10(5), 1039–1051 (2004).
[Crossref]

T. Fukushima, unpublished.

Gmachl, C.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Gurevich, S. A.

E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
[Crossref]

Harayama, T.

T. Fukushima, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes,” Appl. Opt. 51(14), 2515–2520 (2012).
[Crossref] [PubMed]

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5(2), 247–271 (2011).
[Crossref]

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE Sel. Top. Quantum Electron. 10(5), 1039–1051 (2004).
[Crossref]

Hentschel, M.

M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
[Crossref] [PubMed]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Ho, S.-T.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
[Crossref]

Johnson, N. M.

G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Kan, H.

M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
[Crossref] [PubMed]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Kim, C.-M.

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

Kim, J. H.

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

Kneissl, M.

G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Lee, J.

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

Lee, S. H.

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Liu, B.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
[Crossref]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Narimanov, E. E.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Nöckel, J. U.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Oh, K. R.

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Pflügl, C.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Portnoi, M. E.

E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
[Crossref]

Rim, S.

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

Sakaguchi, K.

T. Fukushima, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes,” Appl. Opt. 51(14), 2515–2520 (2012).
[Crossref] [PubMed]

Shinohara, S.

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5(2), 247–271 (2011).
[Crossref]

Shtengel, G. E.

E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
[Crossref]

Sivco, D. L.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Solomon, G. S.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
[Crossref]

Song, Q.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
[Crossref]

Stone, A. D.

G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Sunada, S.

T. Fukushima, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes,” Appl. Opt. 51(14), 2515–2520 (2012).
[Crossref] [PubMed]

Tokuda, Y.

T. Fukushima, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes,” Appl. Opt. 51(14), 2515–2520 (2012).
[Crossref] [PubMed]

Türeci, H. E.

G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

Wang, Q. J.

M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
[Crossref] [PubMed]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Wiersig, J.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Yamanishi, M.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Yan, C.

M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
[Crossref] [PubMed]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Yu, N.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

Appl. Opt. (1)

T. Fukushima, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Lowest-order axial and ring mode lasing in confocal quasi-stadium laser diodes,” Appl. Opt. 51(14), 2515–2520 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spriral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[Crossref]

C.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92(13), 131110 (2008).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity,” Appl. Phys. Lett. 94(25), 251101 (2009).
[Crossref]

IEEE Sel. Top. Quantum Electron. (1)

T. Fukushima and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE Sel. Top. Quantum Electron. 10(5), 1039–1051 (2004).
[Crossref]

Laser Photon. Rev. (1)

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5(2), 247–271 (2011).
[Crossref]

Opt. Express (1)

M. Hentschel, Q. J. Wang, C. Yan, F. Capasso, T. Edamura, and H. Kan, “Emission properties of electrically pumped triangular shaped microlasers,” Opt. Express 18(16), 16437–16442 (2010).
[Crossref] [PubMed]

Phys. Rev. A (1)

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80(4), 041807 (2009).
[Crossref]

Science (1)

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, “TE and TM optical gains in AlGaAs/GaAs single-quantum-well lasers,” Semicond. Sci. Technol. 8(1), 80–87 (1993).
[Crossref]

Other (4)

T. Fukushima, unpublished.

H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry (Springer-Verlag, 1991).

E. W. Weisstein, “Illumination problem,” MathWorld-A Wolfram Web Resource ( http://mathworld.wolfram.com/IlluminationProblem.html ).

T. Fukushima, S. Shinohara, S. Sunada, T. Harayama, K. Sakaguchi, and Y. Tokuda, “Ray dynamical simulation of Penrose unilluminable room cavity,” in Frontiers in Optics (FiO) and Laser Sicence (LS) XXIX Meetings (Optical Society of America, Washington, DC, 2013), JW3A.19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the structure of the Penrose cavity. (b) Scanning electron microscopy (SEM) image of the fabricated GaAs microlaser.

Fig. 2
Fig. 2

Poincaré surface of section and ray dynamical trajectories calculated for the Penrose cavity: (a) Poincaré surface of section consisting of three colored regions; (b) chaotic ray trajectory corresponding to the blue region; (c) chaotic ray trajectory corresponding to the red region; (d) chaotic ray trajectory corresponding to the chaotic sea in the green region (i.e., excluding the islands within the green region); (e) stable axial trajectory corresponding to the islands in the green region; (f) stable diamond-shaped trajectory corresponding to the islands in the green region; (g) two stable V-shaped trajectories corresponding to the islands in the green region. The yellow lines and red arrows show the stable periodic orbits and predicted output directions, respectively.

Fig. 3
Fig. 3

Lasing spectra of the Penrose cavity microlaser at injection currents of (a) 340 mA and (b) 700 mA.

Fig. 4
Fig. 4

Far-field emission patterns of the Penrose cavity microlaser at injection currents of (a) 340 mA and (b) 700 mA for TE and TM polarized components. The green lines show the output direction for the diamond-shaped cavity modes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f= a 2 b 2 .
θ=± sin 1 [ n eff w ( 2b+d ) 2 + w 2 ].
α= 2 A ln 1 R ,
A=2 ( 2b+d ) 2 + w 2 .

Metrics