Abstract

We investigate Bessel-like modes guided in a double cladding fiber where the outer cladding is an aircladding. For very high order LP0X -modes, the azimuthal symmetry is broken and the mode is no longer linearly polarized. This is observed experimentally and confirmed numerically. The effect is investigated numerically using a full vectorial modesolver and is observed to be dependent on the fiber design. The effect on the diffraction free propagation distance of the modes is investigated using a fast Fourier transform propagation routine and compared to the properties of an ideal circularly symmetric mode. The free space properties of modes suffering from break up of azimuthal symmetry are also investigated experimentally by measuring the free space propagation of a LP016-mode excited in the double cladding fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
    [CrossRef]
  2. L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in CLEO Technical Digest, Optical Society of America (2012), p. CTu3M.6.
  3. E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
    [CrossRef]
  4. X. Peng, K. Kim, M. Mielke, T. Booth, J. Nicholson, J. M. Fini, X. Liu, A. DeSantolo, P. S. Westbrook, R. S. Windeler, E. M. Monberg, F. V. DiMarcello, C. Headley, D. J. DiGiovanni, “Higher-order mode fiber enables high energy chirped-pulse amplification,” Opt. Express 21(26), 32411–32416 (2013).
    [CrossRef]
  5. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, R. Lingle, “6×56-GB/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [CrossRef] [PubMed]
  6. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
    [CrossRef]
  7. P. Steinvurzel, K. Tantiwanichapan, M. Goto, S. Ramachandran, “Fiber-based Bessel beams with controllable diffraction-resistant distance,” Opt. Lett. 36(23), 4671–4673 (2011).
    [CrossRef] [PubMed]
  8. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
    [CrossRef]
  9. P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, S. Ramachandran, “Broadband parametric wavelength conversion at 1 μm with large mode area fibers,” Opt. Lett. 39(4), 743–746 (2014).
    [CrossRef] [PubMed]
  10. M. J. Steel, “Reflection symmetry and mode tranversality in microstructured fibers,” Opt. Express 12(8), 1497–1509 (2004).
    [CrossRef] [PubMed]
  11. M. J. Steel, T. P. White, C. M. de Sterke, R.C. McPhedran, L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26(8), 488–490 (2001).
    [CrossRef]
  12. J. M. Fini, “Improved symmetry analysis of many-moded microstructure optical fibers,” J. Opt. Soc. Am. B 21(8), 1431–1436 (2004).
    [CrossRef]
  13. N. Delen, B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15(4), 857–867 (1998).
    [CrossRef]
  14. S. Golowich, “Asymptotic theory of strong spin-orbit coupling in optical fiber,” Opt. Lett. 39(1), 92–95 (2014).
    [CrossRef]

2014

2013

2011

2008

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[CrossRef]

2006

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

2004

2001

1998

1994

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

1987

Bolle, C. A.

Booth, T.

Botten, L. C.

Chen, Y.

P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, S. Ramachandran, “Broadband parametric wavelength conversion at 1 μm with large mode area fibers,” Opt. Lett. 39(4), 743–746 (2014).
[CrossRef] [PubMed]

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in CLEO Technical Digest, Optical Society of America (2012), p. CTu3M.6.

de Sterke, C. M.

Delen, N.

Demas, J.

DeSantolo, A.

DiGiovanni, D. J.

DiMarcello, F. V.

Durnin, J.

Essiambre, R.-J.

Fini, J. M.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[CrossRef]

Gnauck, A. H.

Golowich, S.

Goto, M.

Headley, C.

Hooker, B.

Kim, K.

Li, E.

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

Lingle, R.

Liu, X.

McCurdy, A.

McPhedran, R.C.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[CrossRef]

Mielke, M.

Monberg, E. M.

Nicholson, J.

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[CrossRef]

Peckham, D. W.

Peng, X.

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

Ramachandran, S.

P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, S. Ramachandran, “Broadband parametric wavelength conversion at 1 μm with large mode area fibers,” Opt. Lett. 39(4), 743–746 (2014).
[CrossRef] [PubMed]

P. Steinvurzel, K. Tantiwanichapan, M. Goto, S. Ramachandran, “Fiber-based Bessel beams with controllable diffraction-resistant distance,” Opt. Lett. 36(23), 4671–4673 (2011).
[CrossRef] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[CrossRef]

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in CLEO Technical Digest, Optical Society of America (2012), p. CTu3M.6.

Randel, S.

Rishøj, L.

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in CLEO Technical Digest, Optical Society of America (2012), p. CTu3M.6.

Rottwitt, K.

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in CLEO Technical Digest, Optical Society of America (2012), p. CTu3M.6.

Ryf, R.

Sierra, A.

Steel, M. J.

Steinvurzel, P.

Tai, B.

Tantiwanichapan, K.

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

Wang, X.

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

Westbrook, P. S.

White, T. P.

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

Windeler, R. S.

Winzer, P. J.

Yan, L.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[CrossRef]

Zhang, C.

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

Appl. Phys. Lett.

E. Li, X. Wang, C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

J. Lightwave Technol.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Laser Photon. Rev.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

L. Rishøj, Y. Chen, P. Steinvurzel, K. Rottwitt, S. Ramachandran, “High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities,” in CLEO Technical Digest, Optical Society of America (2012), p. CTu3M.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Microscope image of the fiber end facet. The outer diameter of the fiber is 156 μm. The radius of the inner cladding is 39 μm and the airholes have a radius of 2 μm. (b) A sketch of the refractive index profile of the fiber along the direction indicated by the arrow in (a).

Fig. 2
Fig. 2

(a) Conversion efficiency of the LPG converting LP01 to BT016 in the aircladding fiber. (b) Image of the BT016-mode after 76 cm of propagation in the aircladding fiber.

Fig. 3
Fig. 3

(a) Sketch of the simulated fiber geometry. (b) Zoom-in on the airholes in the simulated fiber geometry. (c) Zoom-in on the mesh in the aircladding region where the mesh has the finest structures. The length of the arrow is as indicated in the figure 4 μm.

Fig. 4
Fig. 4

(a) BT011 in aircladding fiber where the airholes have a radius of 2 μm. The deviation in the first norm square of the transverse electric field vector is to be evaluated along the first ring in the mode. (b) Deviation of the first norm square of the transverse electric field vector along the first ring in BT011 guided in the aircladding fiber, the radius of the airholes are varied and the number of holes are conserved.

Fig. 5
Fig. 5

Onset of the bowtie effect as a function of the radius of the innercladding.

Fig. 6
Fig. 6

(a) BT016-mode found with the full vectorial modesolver for an aircladding fiber with a hole radius of 2 μm is plotted with arrows indicating the polarization. (b) Zoom-in on the central rings in the simulated mode. (c) Measured modal image with arrows indicating the polarization of the mode. (d) Setup for measuring the polarization of the mode.

Fig. 7
Fig. 7

(a) Setup for measuring the free space propagation of a mode excited by a LPG. (b) Images from the measurements are stacked and plotted along a single axis - the horizontal axis in the mode images in (c). (c) Mode images after, from the top, 0 μm, 100 μm, and 200 μm of free space propagation.

Fig. 8
Fig. 8

(a) Modal image of BT016 at 823 nm calculated for the aircladding fiber, where the holes have a radius of 2 μm. The axes along which the free propagation is imaged in (b) and (c) are indicated. (b) Free space propagation of BT016 along the first axis. (c) Free space propagation of BT016 along the second axis.

Fig. 9
Fig. 9

Diffraction free propagation distance as function of modeorder for LP0X -modes/BT0X -modes in an aircladding fiber and for ideal LP0X -modes found with a scalar mode solver.

Metrics