Abstract

Real-time experimental measurements of the spectrally-resolved noise properties of supercontinuum (SC) have been challenging because of the lack of ultrafast optical spectrometer technologies. Understanding the SC noise is increasingly important because it not only can gain new insight of the complex spectral dynamics of SC generation, but also provides clues to search for stable SC source. Driven by the intense interest in the active seeding mechanism for SC generation, we experimentally demonstrate real-time spectrally-resolved, broadband, statistical characterization of minute continuous-wave (CW) seeded SC, enabled by an ultrahigh-speed spectral acquisition technique called optical time-stretch (OTS). The shot-to-shot statistical analysis shows that the seeded SC exhibits a general compromise between SC bandwidth and spectral stability. OTS also allows us to experimentally identify the seeding condition for SC suppression, in which the spectral broadening is mainly contributed by the cascaded parametric process that delays Akhmediev Breather breakup process and subsequent soliton self-frequency shift. Additionally, the characteristic spectral signature of the Raman solitons, which are becalmed by the minute CW seed, can be clearly captured in real-time by OTS operated at a spectral acquisition rate as high as 20 MHz. We anticipate the OTS technique could provide further new insights for understanding more complex mechanisms of seeded-SC generation which can be examined experimentally.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  2. D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [CrossRef] [PubMed]
  3. J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
    [CrossRef] [PubMed]
  4. G. Genty, J. M. Dudley, B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
    [CrossRef]
  5. D. R. Solli, C. Ropers, B. Jalali, “Active Control of Rogue Waves for Stimulated Supercontinuum Generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
    [CrossRef] [PubMed]
  6. D. R. Solli, B. Jalali, C. Ropers, “Seeded Supercontinuum Generation with Optical Parametric Down-Conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
    [CrossRef] [PubMed]
  7. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29(10), 2875–2885 (2012).
    [CrossRef]
  8. Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
    [CrossRef] [PubMed]
  9. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
    [CrossRef] [PubMed]
  10. D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
    [CrossRef] [PubMed]
  11. X. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, K. K. Y. Wong, “Effect of the CW-seed's linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron.in press.
  12. J. Chou, D. R. Solli, B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
    [CrossRef]
  13. C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19(17), 15810–15816 (2011).
    [CrossRef] [PubMed]
  14. Y. Qiu, J. Xu, K. K. Y. Wong, K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20(22), 24115–24123 (2012).
    [CrossRef] [PubMed]
  15. T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37(16), 3330–3332 (2012).
    [CrossRef] [PubMed]
  16. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
    [CrossRef] [PubMed]
  17. F. Xing, H. Chen, M. Chen, S. Yang, S. Xie, “Simple approach for fast real-time line scan microscopic imaging,” Appl. Opt. 52(28), 7049–7053 (2013).
    [CrossRef] [PubMed]
  18. K. Goda, B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
    [CrossRef]
  19. T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
    [CrossRef] [PubMed]
  20. J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
    [CrossRef] [PubMed]
  21. D. R. Solli, G. Herink, B. Jalali, C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6(7), 463–468 (2012).
    [CrossRef]
  22. D. R. Solli, C. Ropers, B. Jalali, “Measuring single-shot modulation instability and supercontinuum spectra at megahertz rates,” Nonlinearity 26(3), R85–R92 (2013).
    [CrossRef]
  23. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
    [CrossRef] [PubMed]
  24. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
    [CrossRef] [PubMed]
  25. D. R. Solli, C. Ropers, B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96(15), 151108 (2010).
    [CrossRef]
  26. K. K. Tsia, K. Goda, D. Capewell, B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
    [CrossRef] [PubMed]
  27. D. R. Solli, S. Gupta, B. Jalali, “Optical phase recovery in the dispersive Fourier transform,” Appl. Phys. Lett. 95(23), 231108 (2009).
    [CrossRef]
  28. M. Erkintalo, G. Genty, J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185(1), 135–144 (2010).
    [CrossRef]
  29. S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
    [CrossRef]
  30. J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
    [CrossRef] [PubMed]

2014 (2)

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[CrossRef] [PubMed]

2013 (5)

2012 (7)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

D. R. Solli, G. Herink, B. Jalali, C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6(7), 463–468 (2012).
[CrossRef]

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37(16), 3330–3332 (2012).
[CrossRef] [PubMed]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29(10), 2875–2885 (2012).
[CrossRef]

Y. Qiu, J. Xu, K. K. Y. Wong, K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20(22), 24115–24123 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (4)

K. K. Tsia, K. Goda, D. Capewell, B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96(15), 151108 (2010).
[CrossRef]

M. Erkintalo, G. Genty, J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185(1), 135–144 (2010).
[CrossRef]

D. R. Solli, B. Jalali, C. Ropers, “Seeded Supercontinuum Generation with Optical Parametric Down-Conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

2009 (3)

G. Genty, J. M. Dudley, B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

D. R. Solli, S. Gupta, B. Jalali, “Optical phase recovery in the dispersive Fourier transform,” Appl. Phys. Lett. 95(23), 231108 (2009).
[CrossRef]

2008 (3)

J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, B. Jalali, “Active Control of Rogue Waves for Stimulated Supercontinuum Generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

J. Chou, D. R. Solli, B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Akhmediev, N.

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Bang, O.

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29(10), 2875–2885 (2012).
[CrossRef]

Ben Salem, A.

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Capewell, D.

Chan, A. C. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Chan, G. C. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Chen, H.

Chen, M.

Cheung, K. K. Y.

Chou, J.

J. Chou, D. R. Solli, B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Combes, Y.

Di Carlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Dias, F.

Dudley, J. M.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[CrossRef] [PubMed]

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[CrossRef] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

M. Erkintalo, G. Genty, J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185(1), 135–144 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

G. Genty, J. M. Dudley, B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

G. Genty, J. M. Dudley, B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[CrossRef] [PubMed]

Erkintalo, M.

M. Erkintalo, G. Genty, J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185(1), 135–144 (2010).
[CrossRef]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Genty, G.

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[CrossRef] [PubMed]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[CrossRef] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

M. Erkintalo, G. Genty, J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185(1), 135–144 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

G. Genty, J. M. Dudley, B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Goda, K.

K. Goda, B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

Godin, T.

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Gupta, S.

D. R. Solli, S. Gupta, B. Jalali, “Optical phase recovery in the dispersive Fourier transform,” Appl. Phys. Lett. 95(23), 231108 (2009).
[CrossRef]

Herink, G.

D. R. Solli, G. Herink, B. Jalali, C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6(7), 463–468 (2012).
[CrossRef]

Ho, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Jalali, B.

K. Goda, B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[CrossRef]

D. R. Solli, C. Ropers, B. Jalali, “Measuring single-shot modulation instability and supercontinuum spectra at megahertz rates,” Nonlinearity 26(3), R85–R92 (2013).
[CrossRef]

D. R. Solli, G. Herink, B. Jalali, C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6(7), 463–468 (2012).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

D. R. Solli, B. Jalali, C. Ropers, “Seeded Supercontinuum Generation with Optical Parametric Down-Conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96(15), 151108 (2010).
[CrossRef]

D. R. Solli, S. Gupta, B. Jalali, “Optical phase recovery in the dispersive Fourier transform,” Appl. Phys. Lett. 95(23), 231108 (2009).
[CrossRef]

D. R. Solli, C. Ropers, B. Jalali, “Active Control of Rogue Waves for Stimulated Supercontinuum Generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

J. Chou, D. R. Solli, B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Kibler, B.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Kudlinski, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[CrossRef] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

Lam, E. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Larger, L.

Larsen, C.

Lau, A. K. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37(16), 3330–3332 (2012).
[CrossRef] [PubMed]

Lau, A. P. T.

Li, F.

Li, Q.

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Merolla, J. M.

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[CrossRef] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

Møller, U.

Moselund, P. M.

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Mussot, A.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[CrossRef] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

Nguyen, D. M.

Qiu, Y.

Robles, J. D. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Ropers, C.

D. R. Solli, C. Ropers, B. Jalali, “Measuring single-shot modulation instability and supercontinuum spectra at megahertz rates,” Nonlinearity 26(3), R85–R92 (2013).
[CrossRef]

D. R. Solli, G. Herink, B. Jalali, C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6(7), 463–468 (2012).
[CrossRef]

D. R. Solli, C. Ropers, B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96(15), 151108 (2010).
[CrossRef]

D. R. Solli, B. Jalali, C. Ropers, “Seeded Supercontinuum Generation with Optical Parametric Down-Conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, B. Jalali, “Active Control of Rogue Waves for Stimulated Supercontinuum Generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Shum, H. C.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Solli, D. R.

D. R. Solli, C. Ropers, B. Jalali, “Measuring single-shot modulation instability and supercontinuum spectra at megahertz rates,” Nonlinearity 26(3), R85–R92 (2013).
[CrossRef]

D. R. Solli, G. Herink, B. Jalali, C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6(7), 463–468 (2012).
[CrossRef]

D. R. Solli, C. Ropers, B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96(15), 151108 (2010).
[CrossRef]

D. R. Solli, B. Jalali, C. Ropers, “Seeded Supercontinuum Generation with Optical Parametric Down-Conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

D. R. Solli, S. Gupta, B. Jalali, “Optical phase recovery in the dispersive Fourier transform,” Appl. Phys. Lett. 95(23), 231108 (2009).
[CrossRef]

D. R. Solli, C. Ropers, B. Jalali, “Active Control of Rogue Waves for Stimulated Supercontinuum Generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

J. Chou, D. R. Solli, B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Sørensen, S. T.

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29(10), 2875–2885 (2012).
[CrossRef]

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

Sylvestre, T.

Tang, A. H. L.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Tang, M. Y. H.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Thomsen, C. L.

Toenger, S.

Tsia, K. K.

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[CrossRef] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37(16), 3330–3332 (2012).
[CrossRef] [PubMed]

Y. Qiu, J. Xu, K. K. Y. Wong, K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20(22), 24115–24123 (2012).
[CrossRef] [PubMed]

K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
[CrossRef] [PubMed]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19(17), 15810–15816 (2011).
[CrossRef] [PubMed]

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

X. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, K. K. Y. Wong, “Effect of the CW-seed's linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron.in press.

Wai, P. K. A.

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Wei, X.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

X. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, K. K. Y. Wong, “Effect of the CW-seed's linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron.in press.

Wetzel, B.

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[CrossRef] [PubMed]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[CrossRef] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

Wong, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[CrossRef] [PubMed]

Y. Qiu, J. Xu, K. K. Y. Wong, K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20(22), 24115–24123 (2012).
[CrossRef] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37(16), 3330–3332 (2012).
[CrossRef] [PubMed]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19(17), 15810–15816 (2011).
[CrossRef] [PubMed]

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
[CrossRef] [PubMed]

K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
[CrossRef] [PubMed]

X. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, K. K. Y. Wong, “Effect of the CW-seed's linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron.in press.

Wong, T. T. W.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37(16), 3330–3332 (2012).
[CrossRef] [PubMed]

Xie, S.

Xing, F.

Xu, J.

Xu, S.

X. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, K. K. Y. Wong, “Effect of the CW-seed's linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron.in press.

Yang, S.

Yang, Z.

X. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, K. K. Y. Wong, “Effect of the CW-seed's linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron.in press.

Zghal, M.

Zhang, C.

Zhou, Y.

Zhu, R.

Appl. Opt. (1)

Appl. Phys. B (1)

G. Genty, J. M. Dudley, B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

J. Chou, D. R. Solli, B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

D. R. Solli, C. Ropers, B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96(15), 151108 (2010).
[CrossRef]

D. R. Solli, S. Gupta, B. Jalali, “Optical phase recovery in the dispersive Fourier transform,” Appl. Phys. Lett. 95(23), 231108 (2009).
[CrossRef]

Eur. Phys. J. Spec. Top. (1)

M. Erkintalo, G. Genty, J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185(1), 135–144 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

D. R. Solli, G. Herink, B. Jalali, C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6(7), 463–468 (2012).
[CrossRef]

K. Goda, B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[CrossRef]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Nonlinearity (1)

D. R. Solli, C. Ropers, B. Jalali, “Measuring single-shot modulation instability and supercontinuum spectra at megahertz rates,” Nonlinearity 26(3), R85–R92 (2013).
[CrossRef]

Opt. Commun. (1)

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

Opt. Express (7)

J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

Y. Qiu, J. Xu, K. K. Y. Wong, K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20(22), 24115–24123 (2012).
[CrossRef] [PubMed]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[CrossRef] [PubMed]

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
[CrossRef] [PubMed]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19(17), 15810–15816 (2011).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

D. R. Solli, C. Ropers, B. Jalali, “Active Control of Rogue Waves for Stimulated Supercontinuum Generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, B. Jalali, C. Ropers, “Seeded Supercontinuum Generation with Optical Parametric Down-Conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Sci Rep (2)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012).
[CrossRef] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014).
[CrossRef] [PubMed]

Other (1)

X. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, K. K. Y. Wong, “Effect of the CW-seed's linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron.in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) OTS-captured spectrally-resolved power histograms of unseeded SC (up, left), SC seeded at 1073 nm (up, right), SC seeded at 1079 nm (bottom, left) and SC seeded at 1081 nm (bottom, right). 2000 spectra are captured in each case. The white bars locate the CW wavelengths. The color bar represents the number of events. (b) Power histograms of the selected wavelengths indicated by the white arrows in (a). Note that the power axis (x-axis) is plotted in a logarithmic scale starting from the noise floor. The pump peak power is fixed at 80 W and the CW seed power is ~80,000 times weaker than the pump peak power.

Fig. 2
Fig. 2

(a) MI gain spectral profile and 15 dB bandwidth variations when the pump power is 80 W. (b) The OTS-captured spectrally-resolved power histograms at the seed wavelengths tuned from 1045 nm to 1081 nm (labeled inside the figures). CW wavelengths are indicated as white bars in the spectrally-resolved histograms. The color bar represents the number of events. The CW seed power is ~80,000 times weaker than the pump peak power.

Fig. 3
Fig. 3

OTS measured higher-order moment statistics of coefficient of variation (Cυ), skewness (γ) and kurtosis (κ) of the seeded SC and the unseeded SC (shown at the bottom of each plot). The pump peak power is fixed at 80 W and the CW seed power is ~80,000 times weaker than the pump peak power. The scales of the higher-order moments are indicated by the color bars. The same MI gain profile (shown in Fig. 2(a)) is also included here for clarity.

Fig. 4
Fig. 4

SICM of (a) the unseeded SC, (b) the SC seeded at 1073 nm (about half Stokes MI peak shift), (c) the SC seeded at 1079 nm and (d) the SC seeded at 1081 nm (Stokes MI peak shift). The scale of the spectral correlation is indicated by the left color bar. The OTS-captured spectra in each case are shown together with the SICM in two different representations: (Top of the SICM) Superposition of 100 OTS spectra (green) with the average of 2000 single-shot spectra (black). The red lines denotes the pump wavelengths whereas the blue dashed lines denotes the CW wavelengths; (Right to the SCIM) Spectrally-resolved histograms. The right color bar represents the number of events. The pump peak power is fixed at 80 W and the CW seed power is ~80,000 times weaker than the pump peak power. The white arrows in (b) & (c) indicate the narrowing effect detailed in the text.

Fig. 5
Fig. 5

Evolution of spectrally-resolved power histograms as a function of the input pump peak power: (Top) unseeded SC, (Bottom) SC seeded at 1078 nm. The color bar represents the number of events. The insets are the zoom-in views for the pump powers 20 – 52 W, illustrating the differences of the pre-solitonic dynamics between two cases.

Fig. 6
Fig. 6

Pump-power dependent statistical higher-order moments of (Top row) the unseeded SC and (Bottom row) the SC seeded at 1078 nm. From left column to right column: coefficient of variation (Cυ), skewness (γ) and kurtosis (κ). The corresponding values are indicated by the color bars at the bottom of each column.

Metrics