Abstract

The conventional optical coherence tomography (OCT) images based on enhanced scattering and the photothermal (PT) images based on enhanced absorption of the localized surface plasmon (LSP) resonance of Au nanorings (NRIs) in a bio-tissue sample are demonstrated with the scans of an OCT system (1310-nm system), in which the spectral range covers the LSP resonance peak wavelength, and another OCT system (1060-nm system), in which the spectral range is away from the LSP resonance peak wavelength. A PT image is formed by evaluating the modulation frequency (400 Hz) response of an excitation laser with its wavelength (1308 nm) close to the LSP resonance peak at 1305 nm of the Au NRI solution. With the scan of the 1310-nm OCT system, the Au NRI distribution in the bio-tissue sample can be observed in both conventional OCT and PT images. However, with the scan of the 1060-nm OCT system, the Au NRI distribution can be clearly observed only in the PT image. The diffusion process of Au NRIs in the bio-tissue sample can be traced with the scan of either OCT system. Based on phantom experiments, it is shown that the PT image can help in resolving the ambiguity of a conventional OCT image between the enhanced scattering of Au NRIs and the strong scattering of a tissue structure in the 1310-nm OCT scanning. Also, under the condition of weak intrinsic sample scattering, particularly in the scan of the 1060-nm system, the PT signal can be lower than a saturating level, which is determined by the excitation power. By increasing OCT system signal-to-noise ratio or M-mode scan time, the PT signal level can be enhanced.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
    [CrossRef] [PubMed]
  4. C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
    [CrossRef] [PubMed]
  5. M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
    [CrossRef] [PubMed]
  6. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [CrossRef] [PubMed]
  7. X. Huang, M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
    [CrossRef]
  8. B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
    [CrossRef] [PubMed]
  9. X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  10. S. Lal, S. E. Clare, N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
    [CrossRef] [PubMed]
  11. S. Jelveh, D. B. Chithrani, “Gold nanostructures as a platform for combinational therapy in future cancer therapeutics,” Cancers (Basel) 3(4), 1081–1110 (2011).
    [CrossRef] [PubMed]
  12. E. S. Day, J. G. Morton, J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001 (2009).
    [CrossRef] [PubMed]
  13. X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochem. Photobiol. 82(2), 412–417 (2006).
    [CrossRef] [PubMed]
  14. R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines,” J. Neurooncol. 86(2), 165–172 (2008).
    [CrossRef] [PubMed]
  15. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
    [CrossRef] [PubMed]
  16. D. C. Adler, S. W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [CrossRef] [PubMed]
  17. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35(5), 700–702 (2010).
    [CrossRef] [PubMed]
  18. M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [CrossRef] [PubMed]
  19. H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005).
    [CrossRef] [PubMed]
  20. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in optical coherence microscopy,” Opt. Express 20(19), 21385–21399 (2012).
    [CrossRef] [PubMed]
  21. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
    [CrossRef] [PubMed]
  22. M. C. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [CrossRef] [PubMed]
  23. M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
    [CrossRef] [PubMed]
  24. W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
    [CrossRef] [PubMed]
  25. G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
    [CrossRef] [PubMed]
  26. A. M. Gobin, J. J. Moon, J. L. West, “EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells,” Internal. J. Nanomed. 3, 351–358 (2008).
  27. L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
    [CrossRef] [PubMed]
  28. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
    [CrossRef] [PubMed]
  29. J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1(4), 686–695 (2010).
    [CrossRef]
  30. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
    [CrossRef] [PubMed]
  31. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
    [CrossRef] [PubMed]
  32. E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
    [CrossRef] [PubMed]
  33. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
    [CrossRef]
  34. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [CrossRef] [PubMed]
  35. H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
    [CrossRef] [PubMed]
  36. C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
    [CrossRef] [PubMed]
  37. H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
    [CrossRef] [PubMed]
  38. S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
    [CrossRef]
  39. T. T. Chi, C. K. Lee, C. T. Wu, C. C. Yang, M. T. Tsai, C. P. Chiang, “Motion-insensitive optical coherence tomography based micro-angiography,” Opt. Express 19(27), 26117–26131 (2011).
    [CrossRef] [PubMed]
  40. R. K. Wang, A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
    [CrossRef] [PubMed]

2013 (1)

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

2012 (2)

2011 (6)

T. T. Chi, C. K. Lee, C. T. Wu, C. C. Yang, M. T. Tsai, C. P. Chiang, “Motion-insensitive optical coherence tomography based micro-angiography,” Opt. Express 19(27), 26117–26131 (2011).
[CrossRef] [PubMed]

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[CrossRef] [PubMed]

S. Jelveh, D. B. Chithrani, “Gold nanostructures as a platform for combinational therapy in future cancer therapeutics,” Cancers (Basel) 3(4), 1081–1110 (2011).
[CrossRef] [PubMed]

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[CrossRef] [PubMed]

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

2010 (7)

X. Huang, M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
[CrossRef]

R. K. Wang, A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[CrossRef] [PubMed]

C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35(5), 700–702 (2010).
[CrossRef] [PubMed]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1(4), 686–695 (2010).
[CrossRef]

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

2009 (5)

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[CrossRef] [PubMed]

C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
[CrossRef] [PubMed]

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

E. S. Day, J. G. Morton, J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001 (2009).
[CrossRef] [PubMed]

2008 (7)

R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines,” J. Neurooncol. 86(2), 165–172 (2008).
[CrossRef] [PubMed]

A. M. Gobin, J. J. Moon, J. L. West, “EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells,” Internal. J. Nanomed. 3, 351–358 (2008).

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

S. Lal, S. E. Clare, N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

2007 (3)

E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

2006 (3)

X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[CrossRef] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochem. Photobiol. 82(2), 412–417 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005).
[CrossRef] [PubMed]

2004 (1)

M. C. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Adler, D. C.

Agollah, G.

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

Agrawal, A.

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

Agrba, P. D.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Ahn, Y. C.

C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
[CrossRef] [PubMed]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

Astruc, D.

M. C. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Au, L.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Balalaeva, I. V.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Bandaru, N. K.

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

Berclaz, C.

Bernardi, R. J.

R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines,” J. Neurooncol. 86(2), 165–172 (2008).
[CrossRef] [PubMed]

Bhatia, S. N.

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

Bickford, L. R.

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

Blaney, S. M.

R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines,” J. Neurooncol. 86(2), 165–172 (2008).
[CrossRef] [PubMed]

Bocchio, N. L.

Bouwens, A.

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Bugrova, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Bugrova, M. L.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Byeon, C. C.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[CrossRef] [PubMed]

Cang, H.

H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Carpin, L. B.

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

Chang, W. M.

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

Chang, W. Y.

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

Chen, J.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Chen, W. F.

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

Chen, Z.

C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
[CrossRef] [PubMed]

Chi, T. T.

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

T. T. Chi, C. K. Lee, C. T. Wu, C. C. Yang, M. T. Tsai, C. P. Chiang, “Motion-insensitive optical coherence tomography based micro-angiography,” Opt. Express 19(27), 26117–26131 (2011).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

Chiang, C. P.

Chithrani, D. B.

S. Jelveh, D. B. Chithrani, “Gold nanostructures as a platform for combinational therapy in future cancer therapeutics,” Cancers (Basel) 3(4), 1081–1110 (2011).
[CrossRef] [PubMed]

Choi, W. I.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[CrossRef] [PubMed]

Choi, Y.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[CrossRef] [PubMed]

Chou, H. Y. E.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

Chu, C. K.

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

Clare, S. E.

S. Lal, S. E. Clare, N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Cobb, M. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Cohen, D. W.

Connolly, J. L.

Copland, J. A.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Daniel, M. C.

M. C. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Das, S. K.

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

Day, E. S.

E. S. Day, J. G. Morton, J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001 (2009).
[CrossRef] [PubMed]

Drezek, R. A.

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Duvall, C. L.

Eghtedari, M.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochem. Photobiol. 82(2), 412–417 (2006).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochem. Photobiol. 82(2), 412–417 (2006).
[CrossRef] [PubMed]

Fujimoto, J. G.

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Gibson, M. I.

Gidding, M.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

Glaus, C.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

Gobin, A. M.

A. M. Gobin, J. J. Moon, J. L. West, “EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells,” Internal. J. Nanomed. 3, 351–358 (2008).

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Goulley, J.

Halas, N. J.

S. Lal, S. E. Clare, N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Hao, F.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

Huang, S. W.

Huang, X.

X. Huang, M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochem. Photobiol. 82(2), 412–417 (2006).
[CrossRef] [PubMed]

Huber, R.

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochem. Photobiol. 82(2), 412–417 (2006).
[CrossRef] [PubMed]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Jang, B.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[CrossRef] [PubMed]

Jelveh, S.

S. Jelveh, D. B. Chithrani, “Gold nanostructures as a platform for combinational therapy in future cancer therapeutics,” Cancers (Basel) 3(4), 1081–1110 (2011).
[CrossRef] [PubMed]

Käll, M.

E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Kamensky, V. A.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kang, C.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Khlebtsov, B.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Khlebtsov, B. N.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kiang, Y. W.

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Kim, C. S.

C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
[CrossRef] [PubMed]

Kim, I. H.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[CrossRef] [PubMed]

Kim, J. Y.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[CrossRef] [PubMed]

Kim, Y. H.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[CrossRef] [PubMed]

Kimmey, M. B.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Kirillin, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Kirillin, M. Y.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kuo, Y.

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

Kwon, Y. J.

C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
[CrossRef] [PubMed]

Laforest, R.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. E. Clare, N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Lasser, T.

Lee, C. K.

T. T. Chi, C. K. Lee, C. T. Wu, C. C. Yang, M. T. Tsai, C. P. Chiang, “Motion-insensitive optical coherence tomography based micro-angiography,” Opt. Express 19(27), 26117–26131 (2011).
[CrossRef] [PubMed]

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Lee, C. Y.

Lee, H. C.

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Li, X.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Li, Y.

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

Li, Z. Y.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Liaw, L. H. L.

C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
[CrossRef] [PubMed]

Liopo, A. V.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[CrossRef] [PubMed]

Lowery, A. R.

R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines,” J. Neurooncol. 86(2), 165–172 (2008).
[CrossRef] [PubMed]

Meyer, T. A.

Mondelblatt, A.

Moon, J. J.

A. M. Gobin, J. J. Moon, J. L. West, “EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells,” Internal. J. Nanomed. 3, 351–358 (2008).

Morton, J. G.

E. S. Day, J. G. Morton, J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001 (2009).
[CrossRef] [PubMed]

Motamedi, M.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[CrossRef] [PubMed]

Nordlander, P.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

Nuttall, A. L.

R. K. Wang, A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[CrossRef] [PubMed]

Olson, T. Y.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[CrossRef] [PubMed]

Oraevsky, A. A.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[CrossRef] [PubMed]

Orlova, A. G.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Pache, C.

Park, J. H.

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

Park, J. Y.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[CrossRef] [PubMed]

Patil, C. A.

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Saeki, F.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Sailor, M. J.

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

Santschi, C.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schiff, R.

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

Schwartzberg, A. M.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[CrossRef] [PubMed]

Shirmanova, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Shirmanova, M. V.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Siekkinen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

Sirotkina, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Sirotkina, M. A.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Skala, M. C.

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Sun, T.

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Tae, G.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[CrossRef] [PubMed]

Talley, C. E.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[CrossRef] [PubMed]

Thompson, P. A.

R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines,” J. Neurooncol. 86(2), 165–172 (2008).
[CrossRef] [PubMed]

Tsai, M. T.

Tsai, T. H.

Tseng, H. Y.

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Tucker-Schwartz, J. M.

Tung, C. H.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[CrossRef] [PubMed]

Villiger, M.

von Maltzahn, G.

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

Wang, D.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

Wang, J. Y.

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Wang, R. K.

R. K. Wang, A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[CrossRef] [PubMed]

Wang, Y.

Warsen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

Wax, A.

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Welch, M. J.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

West, J. L.

E. S. Day, J. G. Morton, J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001 (2009).
[CrossRef] [PubMed]

A. M. Gobin, J. J. Moon, J. L. West, “EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells,” Internal. J. Nanomed. 3, 351–358 (2008).

R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines,” J. Neurooncol. 86(2), 165–172 (2008).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Wilder-Smith, P.

C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
[CrossRef] [PubMed]

Wiley, B. J.

H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Wu, C. T.

Wu, S. Y.

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Wu, Y. C.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Xi, J.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

Xia, Y.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Yang, C. C.

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

T. T. Chi, C. K. Lee, C. T. Wu, C. C. Yang, M. T. Tsai, C. P. Chiang, “Motion-insensitive optical coherence tomography based micro-angiography,” Opt. Express 19(27), 26117–26131 (2011).
[CrossRef] [PubMed]

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Yang, K. M.

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express 1(4), 1060–1073 (2010).
[CrossRef] [PubMed]

Yang, M.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

Yu, T. K.

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

Zagaynova, E.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

Zagaynova, E. V.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Zhang, H.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

Zhang, J. Z.

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1(4), 686–695 (2010).
[CrossRef]

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[CrossRef] [PubMed]

Zhang, Q.

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhou, C.

Acc. Chem. Res. (1)

S. Lal, S. E. Clare, N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

ACS Nano (2)

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[CrossRef] [PubMed]

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Breast Cancer Res. Treat. (1)

L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125(1), 27–34 (2011).
[CrossRef] [PubMed]

Cancer Res. (1)

G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[CrossRef] [PubMed]

Cancers (Basel) (1)

S. Jelveh, D. B. Chithrani, “Gold nanostructures as a platform for combinational therapy in future cancer therapeutics,” Cancers (Basel) 3(4), 1081–1110 (2011).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

Chem. Rev. (1)

M. C. Daniel, D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Internal. J. Nanomed. (1)

A. M. Gobin, J. J. Moon, J. L. West, “EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells,” Internal. J. Nanomed. 3, 351–358 (2008).

J. Advert. Res. (1)

X. Huang, M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Biomech. Eng. (1)

E. S. Day, J. G. Morton, J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009).
[CrossRef] [PubMed]

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009).
[CrossRef] [PubMed]

R. K. Wang, A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[CrossRef] [PubMed]

J. Neurooncol. (1)

R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines,” J. Neurooncol. 86(2), 165–172 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (1)

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1(4), 686–695 (2010).
[CrossRef]

Nano Lett. (6)

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[CrossRef] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[CrossRef] [PubMed]

Nanotechnology (2)

H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013).
[CrossRef] [PubMed]

H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Photochem. Photobiol. (1)

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochem. Photobiol. 82(2), 412–417 (2006).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Plasmonics (1)

S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6(3), 547–555 (2011).
[CrossRef]

Small (1)

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6(7), 811–817 (2010).
[CrossRef] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Normalized extinction spectrum of the Au NRI solution in the spectral range of 400-1370 nm with the major LSP resonance peak at 1305 nm in wavelength, as indicated by the vertical (pink) dashed line. The insert shows the tilted SEM image of the fabricated Au NRI array before liftoff. The light source spectra of the two OCT systems are also plotted here with the central wavelengths at 1310 and 1060 nm. Meanwhile, the thick (green) arrow is drawn to indicate the excitation laser wavelength at 1308 nm.

Fig. 2
Fig. 2

(a): Photograph of the used pig liver sample with Au NRI solution or PBS delivered into the sample through a hollow fiber. The collocated OCT scanning (represented by the continuous arrow) and excitation laser illumination (represented by the dashed arrow) are close to the distal end of the hollow fiber. (b): Photograph of the phantom setup. The OCT scanning light (cross-sectional scanning of the capillary tube) and the excitation laser are incident from the top to illuminate the sample at the same location.

Fig. 3
Fig. 3

(a): Common optical setup of the two OCT systems with the operation central wavelengths at 1310 and 1060 nm. (b): Setup of the sample arm in the 1310-nm OCT system, in which a beam splitter is used for combining the excitation laser with the OCT light beam. (c): Setup of the sample arm in the 1060-nm OCT system, in which a dichroic mirror is used for combining the excitation laser with the OCT light beam.

Fig. 4
Fig. 4

(a): M-mode scan image for 50 ms of an A-mode scan near the distal end of the injection hollow fiber by using the 1310-nm OCT system when PBS is injected into the pig liver sample and the excitation laser is turned on. (b) and (c): M-mode-scan intensity and differential phase profiles, respectively, at the depth indicated by the (red) arrow in part (a). (d) and (e): Corresponding spectra obtained by Fourier-transforming the M-mode-scan signals in parts (b) and (c), respectively.

Fig. 5
Fig. 5

(a): M-mode scan image for 50 ms of an A-mode scan near the distal end of the injection hollow fiber by using the 1310-nm OCT system when Au NRI solution is injected into the pig liver sample and the excitation laser is turned off. (b) and (c): M-mode-scan intensity and differential phase profiles, respectively, at the depth indicated by the (red) arrow in part (a). (d) and (e): Corresponding spectra obtained by Fourier-transforming the M-mode-scan signals in parts (b) and (c), respectively.

Fig. 6
Fig. 6

(a): M-mode scan image for 50 ms of an A-mode scan near the distal end of the injection hollow fiber by using the 1310-nm OCT system when Au NRI solution is injected into the pig liver sample and the excitation laser is turned on. (b) and (c): M-mode-scan intensity and differential phase profiles, respectively, at the depth indicated by the (red) arrow in part (a). (d) and (e): Corresponding spectra obtained by Fourier-transforming the M-mode-scan signals in parts (b) and (c), respectively.

Fig. 7
Fig. 7

(a): M-mode scan image for 50 ms of an A-mode scan near the distal end of the injection hollow fiber by using the 1060-nm OCT system when Au NRI solution is injected into the pig liver sample and the excitation laser is turned on. (b) and (c): M-mode-scan intensity and differential phase profiles, respectively, at the depth indicated by the (red) arrow in part (a). (d) and (e): Corresponding spectra obtained by Fourier-transforming the M-mode-scan signals in parts (b) and (c), respectively.

Fig. 8
Fig. 8

(a) and (b) [(d) and (e)]: Conventional OCT images of the pig liver sample with Au NRIs injected near the distal end of the injection hollow fiber scanned by the 1310-nm [1060-nm] OCT system when the excitation laser is turned on and off, respectively. (c) and (f): Conventional OCT images scanned by the 1310-nm and 1060-nm OCT systems, respectively, when PBS is injected into the sample and the excitation laser is turned on. (g)-(l): PT images corresponding to the conventional OCT images in (a)-(f), respectively. The (pink) arrows indicate a hole-like structure formed by Au NRI injection.

Fig. 9
Fig. 9

(a)-(g): Conventional OCT images of the 1310-nm system at 0, 20, 40, 60, 80, 100, and 120 min, respectively, after Au NRI solution is injected into the pig liver sample with the excitation laser being turned on. (h)-(n): Corresponding PT images of the conventional OCT images in parts (a)-(g), respectively.

Fig. 10
Fig. 10

(a)-(g): Conventional OCT images of the 1060-nm system at 0, 10, 20, 30, 40, 50, and 60 min, respectively, after Au NRI solution is injected into the pig liver sample with the excitation laser being turned on. (h)-(n): Corresponding PT images of the conventional OCT images in parts (a)-(g), respectively.

Fig. 11
Fig. 11

(a)-(f): Conventional OCT images of phantom samples A-F, respectively, obtained from the scan of the 1310-nm OCT system. (g)-(l): PT images corresponding to the conventional OCT images in (a)-(f), respectively.

Fig. 12
Fig. 12

(a)-(f): Conventional OCT images of phantom samples A-F, respectively, obtained from the scan of the 1060-nm OCT system. (g)-(l): PT images corresponding to the conventional OCT images in (a)-(f), respectively.

Fig. 13
Fig. 13

Average conventional OCT signal intensity (right ordinate) and average PT signal intensity (left ordinate) in the agar mixture region as functions of TiO2 NP concentration in the samples with Au NRIs (samples A-E) when the 1310-nm and 1060-nm OCT systems are used for scanning the samples. The average OCT and PT signal intensities of sample F are depicted by the two horizontal dashed lines and the two I-shaped notations, respectively.

Fig. 14
Fig. 14

(a)-(d): Conventional OCT images of sample E scanned with the 1310-nm OCT system when the system SNRs are 77, 80, 83, and 86 dB, respectively. (e)-(j): Conventional OCT images of sample E scanned with the 1060-nm OCT system when the system SNRs are 77, 80, 83, 86, 89, and 92 dB, respectively. (k)-(t): Corresponding PT images of the conventional OCT images in (a)-(j), respectively.

Fig. 15
Fig. 15

Average OCT signal intensity (right ordinate) and average PT signal intensity (left ordinate) as functions of system SNR of sample E with the scans of the two OCT systems.

Fig. 16
Fig. 16

(a)-(f): PT images of sample A when the M-mode scan times are 25, 50, 75, 100, 125, and 150 ms, respectively, scanned by the 1310-nm OCT system. (g)-(l): PT images of sample A when the M-mode scan times are 25, 50, 75, 100, 125, and 150 ms, respectively, scanned by the 1060-nm OCT system.

Fig. 17
Fig. 17

Average PT signal and noise intensities (with the left ordinate), and PT SNR (with the right ordinate) as functions of M-mode scan time based on the scanning results in Figs. 16(a)-16(l) and other similar measurements.

Fig. 18
Fig. 18

Average OCT signal intensity (right ordinate) and the average PT signal intensity (left ordinate) as functions of excitation laser power when the 1060-nm OCT system is used for scanning sample E.

Fig. 19
Fig. 19

Average OCT signal intensity (right ordinate) and the average PT signal intensity (left ordinate) as functions of modulation frequency when the 1060-nm OCT system is used for scanning sample E.

Metrics