Abstract

We investigate the inhibited spontaneous emission of telecom-band InAs quantum disks (Qdisks) in InP nanowires (NWs). We have evaluated how the inhibition is affected by different disk diameter and thickness. We also compared the inhibition in standing InP NWs and those NWs laying on silica (SiO2), and silicon (Si) substrates. We found that the inhibition is altered when we put the NW on the high-refractive-index materials of Si. Experimentally, the inhibition factor ζ of the Qdisk emission at 1,500 nm decreases from 4.6 to 2.5 for NW on SiO2 and Si substrates, respectively. Those inhibitions are even much smaller than that of 6.4 of the standing NW. The inhibition factors well agree with those calculated from the coupling of the Qdisk to the fundamental guided mode and the continuum of radiative modes. Our observation can be useful for the integration of the NW as light sources in the photonic nanodevices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Sprik, B. A. VanTiggelen, A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
    [CrossRef]
  2. K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1 – 2, 693–701 (1970).
    [CrossRef]
  3. R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. in Chem. Phys. 37, 1–65 (1978).
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  6. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
    [CrossRef] [PubMed]
  7. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
    [CrossRef] [PubMed]
  8. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  9. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
    [CrossRef] [PubMed]
  10. M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
    [CrossRef] [PubMed]
  11. J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [CrossRef] [PubMed]
  13. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
    [CrossRef] [PubMed]
  14. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
    [CrossRef]
  15. B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
    [CrossRef]
  16. M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
    [CrossRef]
  17. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
    [CrossRef]
  18. J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
    [CrossRef] [PubMed]
  19. G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
    [CrossRef]
  20. M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
    [CrossRef]
  21. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  22. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
    [CrossRef]
  23. C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
    [CrossRef]
  24. C. Van Vlack, P. T. Kristensen, S. Hughes, “Spontaneous emission spectra and quantum-light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
    [CrossRef]
  25. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
    [CrossRef] [PubMed]
  26. B. Z. Katsenelenbaum, “Decay of atom in the presence of the fiber (in Russian),” Zh. Tekh. Fiz. XIX p. 1182 (1949).
  27. G. Zhang, K. Tateno, H. Gotoh, T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor-liquid-solid mode,” Applied Physics Express 5, 055201 (2012).
    [CrossRef]
  28. G. Zhang, K. Tateno, M. D. Birowosuto, T. Sogawa, M. Notomi, H. Gotoh, “Au-free InAs/InP nanowires with the atomically abrupt heterojunction,” in preparation.
  29. K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12, 2888–2893 (2012).
    [CrossRef] [PubMed]

2014 (1)

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

2013 (3)

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

2012 (7)

C. Van Vlack, P. T. Kristensen, S. Hughes, “Spontaneous emission spectra and quantum-light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[CrossRef]

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
[CrossRef]

G. Zhang, K. Tateno, H. Gotoh, T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor-liquid-solid mode,” Applied Physics Express 5, 055201 (2012).
[CrossRef]

K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12, 2888–2893 (2012).
[CrossRef] [PubMed]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

2011 (1)

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

2010 (2)

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[CrossRef] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

2009 (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[CrossRef] [PubMed]

2005 (3)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

2004 (1)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

1996 (1)

R. Sprik, B. A. VanTiggelen, A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1981 (1)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

1978 (1)

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. in Chem. Phys. 37, 1–65 (1978).

1970 (1)

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1 – 2, 693–701 (1970).
[CrossRef]

1949 (1)

B. Z. Katsenelenbaum, “Decay of atom in the presence of the fiber (in Russian),” Zh. Tekh. Fiz. XIX p. 1182 (1949).

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abstreiter, G.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[CrossRef] [PubMed]

Bakkers, E. P. A. M.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

Birowosuto, M. D.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
[CrossRef]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[CrossRef] [PubMed]

G. Zhang, K. Tateno, M. D. Birowosuto, T. Sogawa, M. Notomi, H. Gotoh, “Au-free InAs/InP nanowires with the atomically abrupt heterojunction,” in preparation.

Bleuse, J.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

Bracher, G.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Bulgarini, G.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. in Chem. Phys. 37, 1–65 (1978).

Chang, W.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Chen, H.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Chen, L.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Claudon, J.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[CrossRef] [PubMed]

Creasey, M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

Dabidian, N.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Drexhage, K.

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1 – 2, 693–701 (1970).
[CrossRef]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Finley, J.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Floris Van Driel, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

Friedler, I.

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[CrossRef] [PubMed]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

Gerard, J.-M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

Gérard, J. M.

Gérard, J.-M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Gotoh, H.

G. Zhang, K. Tateno, H. Gotoh, T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor-liquid-solid mode,” Applied Physics Express 5, 055201 (2012).
[CrossRef]

K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12, 2888–2893 (2012).
[CrossRef] [PubMed]

G. Zhang, K. Tateno, M. D. Birowosuto, T. Sogawa, M. Notomi, H. Gotoh, “Au-free InAs/InP nanowires with the atomically abrupt heterojunction,” in preparation.

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

Gwo, S.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Hocevar, M.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

Hughes, S.

C. Van Vlack, P. T. Kristensen, S. Hughes, “Spontaneous emission spectra and quantum-light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[CrossRef]

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[CrossRef] [PubMed]

Hugonin, J.-P.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

Irman, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

Jagadish, C.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

Jiang, N.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Katsenelenbaum, B. Z.

B. Z. Katsenelenbaum, “Decay of atom in the presence of the fiber (in Russian),” Zh. Tekh. Fiz. XIX p. 1182 (1949).

Kim, J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Kleppner, D.

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

Koblmüller, G.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Kouwenhoven, L. P.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

Kristensen, P. T.

C. Van Vlack, P. T. Kristensen, S. Hughes, “Spontaneous emission spectra and quantum-light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[CrossRef]

Kuramochi, E.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
[CrossRef]

Lagendijk, A.

R. Sprik, B. A. VanTiggelen, A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

Lalanne, P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[CrossRef] [PubMed]

Li, B.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Lodahl, P.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

Lu, M.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Lu, Y.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Maksymov, I.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

Malik, N. S.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

Matsuo, S.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

Mayer, B.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Mokkapati, S.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

Morkötter, S.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Mosk, A. P.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[CrossRef] [PubMed]

Müller, K.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Nikolaev, I. S.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

Noda, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[CrossRef] [PubMed]

Noetzel, R.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

Notomi, M.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
[CrossRef]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

G. Zhang, K. Tateno, M. D. Birowosuto, T. Sogawa, M. Notomi, H. Gotoh, “Au-free InAs/InP nanowires with the atomically abrupt heterojunction,” in preparation.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Overgaag, K.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. in Chem. Phys. 37, 1–65 (1978).

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qiu, X.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Reimer, M. E.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

Rudolph, D.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Sanders, C. E.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Sauvan, C.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[CrossRef] [PubMed]

Saxena, D.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

Schnell, J.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Shih, C.-K.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Shvets, G.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. in Chem. Phys. 37, 1–65 (1978).

Skipetrov, S. E.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[CrossRef] [PubMed]

Sogawa, T.

G. Zhang, K. Tateno, H. Gotoh, T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor-liquid-solid mode,” Applied Physics Express 5, 055201 (2012).
[CrossRef]

K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12, 2888–2893 (2012).
[CrossRef] [PubMed]

G. Zhang, K. Tateno, M. D. Birowosuto, T. Sogawa, M. Notomi, H. Gotoh, “Au-free InAs/InP nanowires with the atomically abrupt heterojunction,” in preparation.

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Sprik, R.

R. Sprik, B. A. VanTiggelen, A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

Sumikura, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[CrossRef] [PubMed]

Takiguchi, M.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
[CrossRef]

Tan, H. H.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[CrossRef] [PubMed]

Taniyama, H.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
[CrossRef]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

Tateno, K.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

G. Zhang, K. Tateno, H. Gotoh, T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor-liquid-solid mode,” Applied Physics Express 5, 055201 (2012).
[CrossRef]

K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12, 2888–2893 (2012).
[CrossRef] [PubMed]

G. Zhang, K. Tateno, M. D. Birowosuto, T. Sogawa, M. Notomi, H. Gotoh, “Au-free InAs/InP nanowires with the atomically abrupt heterojunction,” in preparation.

Treu, J.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

van Veldhoven, P. J.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

Van Vlack, C.

C. Van Vlack, P. T. Kristensen, S. Hughes, “Spontaneous emission spectra and quantum-light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[CrossRef]

Vanmaekelbergh, D.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

VanTiggelen, B. A.

R. Sprik, B. A. VanTiggelen, A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

Vos, W. L.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[CrossRef] [PubMed]

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Wang, C.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Winnerl, J.

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Wu, C.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yokoo, A.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
[CrossRef]

Zehender, T.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zhang, G.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

G. Zhang, K. Tateno, H. Gotoh, T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor-liquid-solid mode,” Applied Physics Express 5, 055201 (2012).
[CrossRef]

K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12, 2888–2893 (2012).
[CrossRef] [PubMed]

G. Zhang, K. Tateno, M. D. Birowosuto, T. Sogawa, M. Notomi, H. Gotoh, “Au-free InAs/InP nanowires with the atomically abrupt heterojunction,” in preparation.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Zwiller, V.

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

Adv. in Chem. Phys. (1)

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. in Chem. Phys. 37, 1–65 (1978).

Appl. Phys. Lett. (1)

G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides,” Appl. Phys. Lett. 100, 121106 (2012).
[CrossRef]

Applied Physics Express (1)

G. Zhang, K. Tateno, H. Gotoh, T. Sogawa, “Vertically aligned InP nanowires grown via the self-assisted vapor-liquid-solid mode,” Applied Physics Express 5, 055201 (2012).
[CrossRef]

Europhys. Lett. (1)

R. Sprik, B. A. VanTiggelen, A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[CrossRef]

J. Lumin. (1)

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1 – 2, 693–701 (1970).
[CrossRef]

J. of Appl. Phys. (1)

M. D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. of Appl. Phys. 112, 113106 (2012).
[CrossRef]

Nano Lett. (1)

K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, “VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures,” Nano Lett. 12, 2888–2893 (2012).
[CrossRef] [PubMed]

Nature (2)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Nature Commun. (1)

B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J. Finley, “Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature,” Nature Commun. 4, 2931 (2013).
[CrossRef]

Nature Mater. (1)

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nature Mater. 13, 279–285 (2014).
[CrossRef]

Nature Photon. (2)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photon. 4, 174–177 (2010).
[CrossRef]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nature Photon. 7, 963–968 (2013).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

C. Van Vlack, P. T. Kristensen, S. Hughes, “Spontaneous emission spectra and quantum-light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B 85, 075303 (2012).
[CrossRef]

Phys. Rev. Lett. (8)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[CrossRef]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106, 103601 (2011).
[CrossRef] [PubMed]

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Sci. Rep. (1)

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Noetzel, M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[CrossRef] [PubMed]

Science (2)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[CrossRef] [PubMed]

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Zh. Tekh. Fiz. XIX (1)

B. Z. Katsenelenbaum, “Decay of atom in the presence of the fiber (in Russian),” Zh. Tekh. Fiz. XIX p. 1182 (1949).

Other (1)

G. Zhang, K. Tateno, M. D. Birowosuto, T. Sogawa, M. Notomi, H. Gotoh, “Au-free InAs/InP nanowires with the atomically abrupt heterojunction,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Screening of incident plane wave by InP NWs (diameter d = 242±7 nm) inside the air and on different substrates with wavelengths λ = 1,200 nm ((a), (b), and (c)) and λ = 1500 nm ((d), (e), and (f)). Figures are color maps of |Ex|/Einc where Ex and Einc are the amplitude of the electrical field along x and that of the incident field, respectively.

Fig. 2
Fig. 2

(a,b) TEM images of two fabricated InP NWs embedded with multiple InAs Qdisks. The cartoons illustrates the finite cylindrical (sample A) and tapered (sample B) NWs embedded with Qdisks and their thickness t variations. Four different-t and five different-d Qdisks are indicated by red arrows in (a) and (b), respectively. (c) Typical photolumines-cence (PL) spectra from single NW, which emission peaks shown by red arrows. (d) Azimuthal dependence of the integrated intensity of linearly polarized PL bands for λ = 1247 ± 2 nm and λ = 1433 ± 2 nm. The inset shows the false-color microscope image of the NW (sample B). PL spectra were measured using a CW diode laser excitation at 640 nm wavelength and 4K.

Fig. 3
Fig. 3

(a,b,c) PL images of Qdisks in single finite cylindrical NW (sample A) on gold substrate with different positions of the excitation spot. The excitation beam is shown by the white-dashed circles. (d) SEM of image of the corresponding NW and the cartoon illustrates the direction of the NW. (e,f,g) PL spectra of the Qdisks for different excitation-spot positions. Spectra in (e),(f), and (g) correspond to the images in (a), (b), and (c), respectively. Measurements were performed using a CW diode laser excitation at 640 nm wavelength and 4K.

Fig. 4
Fig. 4

(a) PL images of Qdisks in single tapered NW (sample B) on gold substrate. (b) False-color microscope image of the NW with a cartoon for illustrating the NW direction. (c) PL spectra from corresponding PL spots in (a). Measurements were performed using a CW laser at 640 nm wavelength and 4K.

Fig. 5
Fig. 5

(a,b) Time-resolved emission of Qdisks with variation in (a) t (sample A) and (b) d (sample B) inside the single NW on SiO2 substrate. (c) Summary of average emission rates. Calculation and reference P from [18] are shown as orange and black lines, respectively. All measurements were performed using a 80-MHz pulsed laser at 800 nm wavelength and 4K.

Fig. 6
Fig. 6

(a,b) Time-resolved emission of Qdisks inside the single NW (sample A) for different situations, standing of the grown substrate, laying on SiO2, and Si substrates. The emission in (a) and (b) was filtered at 1,200 nm and 1,500 nm, respectively. (c) Collections of the average emission rates from single NW from five NWs in each situation. (d) Normalized decay rates P (obtained from experiments and calculations) as a function of substrate refractive index nsub. All measurements were performed using a 80-MHz pulsed laser at 800 nm wavelength and 4K.

Fig. 7
Fig. 7

Illustration for the analytical model of (a) an infinitely long single NW inside homogeneous medium [18], (b) a dipole close to the interface [3], and (c) NW on the substrate. The red circles are attributed with the emitter.

Fig. 8
Fig. 8

Single NW observed in (a) a false-color microscope image and PL-scan images filtered at (b) short and (c) long emission wavelengths. NP is attributed with the remaining InP catalyst particle.

Fig. 9
Fig. 9

(a) SEM image of a single-standing-large-diameter InP NW (d = 830±35 nm) with a single InAs Qdisk in the middle of the NW. (b,c) PL spectrum (b) and time-resolved emission (c) of the large-d NW. The curve in (c) was filtered at 1,200 nm and the white line is the single exponential fit.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P = Γ N W / Γ bulk = P m + P c
P m = 2 × 3 8 π ( λ / n ) 2 S eff n g n N W
S eff = 0 r c 0 2 π n N W ( r ) 2 | E ( r , θ ) | 2 d r d θ max [ n N W ( r ) 2 | E ( r , θ ) | 2 ]
E int ( r , θ ) = E N W ( r , θ ) [ 1 ( 0 R e 2 l N W k N W h u 3 l N W d u ) ] 1 2
E int ( r , θ ) = E N W ( r , θ ) [ 1 + ( 0 [ ( 1 u 2 ) R + R ] e 2 l N W k N W h u 2 l N W d u ) ] 1 2
R = l int n int 2 l air l int + n int 2 l air
R = l air l int l air + l int
S eff = n N W ( r ) 2 | E ( r ) | 2 d 2 r max [ n N W ( r ) 2 | E ( r ) | 2 ]
d 2 p d t 2 + Γ 0 d p d t + ω 0 2 p = e 2 m E r
p = p 0 e i Ω t , E r = E 0 e i Ω t
Δ ω = Γ 2 8 ω + [ e 2 2 m p 0 ω 0 ] Re [ E 0 ]
Γ Γ 0 = 1 + [ e 2 2 m ω p 0 Γ 0 ] Im [ E 0 ]
E = [ k air 2 Π air + ( Π int ) ]

Metrics