Abstract

Optical transmissions through a continuous planar metal film (without holes) with two-dimensional colloidal crystals coated on one or both interfaces have been experimentally and numerically investigated. Enhanced optical transmissions in the near-infrared regime can be observed for the metal film with identical two-dimensional colloidal crystals coated on both sides, which occur due to the resonant tunneling of surface polariton Bloch eigenmodes excited on periodically structured interfaces. Numerical simulations of transmission spectra show an excellent agreement with the measured ones. Additionally, the numerical simulations reveal that the intensity of tunneling transmission is strongly dependent on the relative shift of the two-dimensional colloidal crystals on the opposite interfaces of the metallic film.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [CrossRef]
  5. Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, Y. Y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
    [CrossRef]
  6. Z. Wei, Y. Cao, Y. Fan, X. Yu, H. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
    [CrossRef] [PubMed]
  7. L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
    [CrossRef]
  8. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
    [CrossRef]
  9. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
    [CrossRef] [PubMed]
  10. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
    [CrossRef]
  11. S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
    [CrossRef]
  12. I. Avrutsky, Y. Zhao, V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
    [CrossRef] [PubMed]
  13. B. Bai, L. Li, L. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30(18), 2360–2362 (2005).
    [CrossRef] [PubMed]
  14. D. Gérard, L. Salomon, F. De Fornel, A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69(11), 113405 (2004).
    [CrossRef]
  15. A. Giannattasio, I. Hooper, W. Barnes, “Transmission of light through thin silver films via surface plasmon-polaritons,” Opt. Express 12(24), 5881–5886 (2004).
    [CrossRef] [PubMed]
  16. C. H. Gan, G. Gbur, “Extraordinary optical transmission through multi-layered systems of corrugated metallic thin films,” Opt. Express 17(22), 20553–20566 (2009).
    [CrossRef] [PubMed]
  17. S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, C. C. Lee, “Using direct nanoimprinting to study extraordinary transmission in textured metal films,” Opt. Express 16(4), 2415–2422 (2008).
    [CrossRef] [PubMed]
  18. S. A. Darmanyan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
    [CrossRef]
  19. W. C. Tan, T. Preist, R. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62(16), 11134–11138 (2000).
    [CrossRef]
  20. D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
    [CrossRef]
  21. N. Bonod, S. Enoch, L. Li, P. Evgeny, M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
    [CrossRef] [PubMed]
  22. F. Meseguer, “Colloidal crystals as photonic crystals,” Colloids Surf. A Physicochem. Eng. Asp. 270–271, 1–7 (2005).
    [CrossRef]
  23. J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
    [CrossRef] [PubMed]
  24. S. G. Romanov, A. V. Korovin, A. Regensburger, U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22–23), 2515–2533 (2011).
    [CrossRef] [PubMed]
  25. L. Shi, X. Liu, H. Yin, J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
    [CrossRef]
  26. X. Yu, L. Shi, D. Han, J. Zi, P. V. Braun, “High quality factor metallodielectric hybrid plasmonic–photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
    [CrossRef]
  27. M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
    [CrossRef]
  28. M. López-García, J. F. Galisteo-López, C. López, A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
    [CrossRef]
  29. N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
    [CrossRef]
  30. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  31. F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 067403 (2005).
    [CrossRef] [PubMed]
  32. M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
    [CrossRef] [PubMed]
  33. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
    [CrossRef]

2012 (2)

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

M. López-García, J. F. Galisteo-López, C. López, A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[CrossRef]

2011 (2)

2010 (5)

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

L. Shi, X. Liu, H. Yin, J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[CrossRef]

X. Yu, L. Shi, D. Han, J. Zi, P. V. Braun, “High quality factor metallodielectric hybrid plasmonic–photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[CrossRef]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

2009 (1)

2008 (2)

S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, C. C. Lee, “Using direct nanoimprinting to study extraordinary transmission in textured metal films,” Opt. Express 16(4), 2415–2422 (2008).
[CrossRef] [PubMed]

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

2006 (3)

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

2005 (6)

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, Y. Y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

F. Meseguer, “Colloidal crystals as photonic crystals,” Colloids Surf. A Physicochem. Eng. Asp. 270–271, 1–7 (2005).
[CrossRef]

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 067403 (2005).
[CrossRef] [PubMed]

B. Bai, L. Li, L. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30(18), 2360–2362 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Giannattasio, I. Hooper, W. Barnes, “Transmission of light through thin silver films via surface plasmon-polaritons,” Opt. Express 12(24), 5881–5886 (2004).
[CrossRef] [PubMed]

D. Gérard, L. Salomon, F. De Fornel, A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69(11), 113405 (2004).
[CrossRef]

2003 (3)

S. A. Darmanyan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[CrossRef]

N. Bonod, S. Enoch, L. Li, P. Evgeny, M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (2)

W. C. Tan, T. Preist, R. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62(16), 11134–11138 (2000).
[CrossRef]

I. Avrutsky, Y. Zhao, V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
[CrossRef] [PubMed]

1998 (2)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Alloschery, O.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Avrutsky, I.

Bai, B.

Bao, Y. J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Barnes, W.

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bäuerle, D.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Blanco, Á.

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[CrossRef]

Blanco, L. A.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 067403 (2005).
[CrossRef] [PubMed]

Bonod, N.

Borisov, A. G.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 067403 (2005).
[CrossRef] [PubMed]

Braun, P. V.

X. Yu, L. Shi, D. Han, J. Zi, P. V. Braun, “High quality factor metallodielectric hybrid plasmonic–photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[CrossRef]

Brodoceanu, D.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Cao, Y.

Cao, Z. S.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Carretero-Palacios, S.

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

Chen, H. L.

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chuang, S. Y.

Darmanyan, S. A.

S. A. Darmanyan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[CrossRef]

De Fornel, F.

D. Gérard, L. Salomon, F. De Fornel, A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69(11), 113405 (2004).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dong, H.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Ebbesen, T.

F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Ebbesen, T. W.

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

N. Bonod, S. Enoch, L. Li, P. Evgeny, M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
[CrossRef] [PubMed]

Evgeny, P.

Fan, Y.

Galisteo-López, J. F.

M. López-García, J. F. Galisteo-López, C. López, A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[CrossRef]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[CrossRef]

Gan, C. H.

García de Abajo, F. J.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 067403 (2005).
[CrossRef] [PubMed]

García-Martín, A.

M. López-García, J. F. Galisteo-López, C. López, A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[CrossRef]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

García-Vidal, F. J.

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

Gay, G.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Gbur, G.

Genet, C.

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gérard, D.

D. Gérard, L. Salomon, F. De Fornel, A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69(11), 113405 (2004).
[CrossRef]

Ghaemi, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giannattasio, A.

Gómez-Santos, G.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 067403 (2005).
[CrossRef] [PubMed]

Han, D.

X. Yu, L. Shi, D. Han, J. Zi, P. V. Braun, “High quality factor metallodielectric hybrid plasmonic–photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[CrossRef]

D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
[CrossRef]

Han, Z. L.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

He, Z.

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

Hooper, I.

Huang, C. P.

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, Y. Y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Ke, M.

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

Klein Koerkamp, K. J.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Kochergin, V.

Korovin, A. V.

S. G. Romanov, A. V. Korovin, A. Regensburger, U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22–23), 2515–2533 (2011).
[CrossRef] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Kuo, S. S.

Lai, Y. H.

Landström, L.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Langer, G.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Lee, C. C.

Lezec, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lezec, H. J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Li, H.

Li, J. Q.

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, Y. Y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Li, L.

Li, X.

D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
[CrossRef]

Liu, X.

L. Shi, X. Liu, H. Yin, J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[CrossRef]

D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
[CrossRef]

Liu, Z.

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

López, C.

M. López-García, J. F. Galisteo-López, C. López, A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[CrossRef]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[CrossRef]

López-García, M.

M. López-García, J. F. Galisteo-López, C. López, A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[CrossRef]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[CrossRef]

Lu, W.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Lu, X.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

Meseguer, F.

F. Meseguer, “Colloidal crystals as photonic crystals,” Colloids Surf. A Physicochem. Eng. Asp. 270–271, 1–7 (2005).
[CrossRef]

Ming, N. B.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Modinos, A.

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

Nevière, M.

O’Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Peng, R. W.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Peng, S.

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

Peschel, U.

S. G. Romanov, A. V. Korovin, A. Regensburger, U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22–23), 2515–2533 (2011).
[CrossRef] [PubMed]

Piglmayer, K.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Preist, T.

W. C. Tan, T. Preist, R. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62(16), 11134–11138 (2000).
[CrossRef]

Regensburger, A.

S. G. Romanov, A. V. Korovin, A. Regensburger, U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22–23), 2515–2533 (2011).
[CrossRef] [PubMed]

Rodrigo, S. G.

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

Romanov, S. G.

S. G. Romanov, A. V. Korovin, A. Regensburger, U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22–23), 2515–2533 (2011).
[CrossRef] [PubMed]

Salomon, L.

D. Gérard, L. Salomon, F. De Fornel, A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69(11), 113405 (2004).
[CrossRef]

Sambles, R.

W. C. Tan, T. Preist, R. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62(16), 11134–11138 (2000).
[CrossRef]

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Shabanov, S. V.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 067403 (2005).
[CrossRef] [PubMed]

Shao, J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Sheng, P.

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

Shi, J.

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

Shi, L.

L. Shi, X. Liu, H. Yin, J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[CrossRef]

X. Yu, L. Shi, D. Han, J. Zi, P. V. Braun, “High quality factor metallodielectric hybrid plasmonic–photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[CrossRef]

Shu, D. J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Stefanou, N.

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

Sun, J.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Tan, W. C.

W. C. Tan, T. Preist, R. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62(16), 11134–11138 (2000).
[CrossRef]

Tang, C. J.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Wang, H. T.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Wang, M.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Wang, Q. J.

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, Y. Y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Wang, Z. L.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Wei, Z.

Weiner, J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Wen, W.

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

Wolff, P.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, F.

D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
[CrossRef]

Wu, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Xu, C.

D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

Yin, H.

L. Shi, X. Liu, H. Yin, J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[CrossRef]

Yu, X.

Z. Wei, Y. Cao, Y. Fan, X. Yu, H. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

X. Yu, L. Shi, D. Han, J. Zi, P. V. Braun, “High quality factor metallodielectric hybrid plasmonic–photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[CrossRef]

Zayats, A. V.

D. Gérard, L. Salomon, F. De Fornel, A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69(11), 113405 (2004).
[CrossRef]

S. A. Darmanyan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[CrossRef]

Zeng, L.

Zhan, P.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Zhang, C.

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, Y. Y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Zhao, Y.

Zhu, S. N.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Zhu, Y. Y.

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, Y. Y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Zi, J.

X. Yu, L. Shi, D. Han, J. Zi, P. V. Braun, “High quality factor metallodielectric hybrid plasmonic–photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[CrossRef]

L. Shi, X. Liu, H. Yin, J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
[CrossRef]

Adv. Funct. Mater. (2)

X. Yu, L. Shi, D. Han, J. Zi, P. V. Braun, “High quality factor metallodielectric hybrid plasmonic–photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010).
[CrossRef]

M. López-García, J. F. Galisteo-López, Á. Blanco, C. López, A. García-Martín, “High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification,” Adv. Funct. Mater. 20(24), 4338–4343 (2010).
[CrossRef]

Adv. Mater. (2)

S. G. Romanov, A. V. Korovin, A. Regensburger, U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23(22–23), 2515–2533 (2011).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, Y. Y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

D. Han, F. Wu, X. Li, C. Xu, X. Liu, J. Zi, “Transmission and absorption of metallic films coated with corrugated dielectric layers,” Appl. Phys. Lett. 89(9), 091104 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Colloids Surf. A Physicochem. Eng. Asp. (1)

F. Meseguer, “Colloidal crystals as photonic crystals,” Colloids Surf. A Physicochem. Eng. Asp. 270–271, 1–7 (2005).
[CrossRef]

Comput. Phys. Commun. (1)

N. Stefanou, V. Yannopapas, A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

Langmuir (1)

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[CrossRef] [PubMed]

Nat. Phys. (1)

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Nature (3)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Lett. A (1)

L. Shi, X. Liu, H. Yin, J. Zi, “Optical response of a flat metallic surface coated with a monolayer array of latex spheres,” Phys. Lett. A 374(8), 1059–1062 (2010).
[CrossRef]

Phys. Rev. B (7)

M. López-García, J. F. Galisteo-López, C. López, A. García-Martín, “Light confinement by two-dimensional arrays of dielectric spheres,” Phys. Rev. B 85(23), 235145 (2012).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[CrossRef]

S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[CrossRef]

S. A. Darmanyan, A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[CrossRef]

W. C. Tan, T. Preist, R. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62(16), 11134–11138 (2000).
[CrossRef]

D. Gérard, L. Salomon, F. De Fornel, A. V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69(11), 113405 (2004).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 067403 (2005).
[CrossRef] [PubMed]

M. Ke, Z. He, S. Peng, Z. Liu, J. Shi, W. Wen, P. Sheng, “Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals,” Phys. Rev. Lett. 99(4), 044301 (2007).
[CrossRef] [PubMed]

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Fabrication procedure and schematic geometry of our microstructure. (b) Top-view SEM image of a planar silver film (about 100 nm of thickness) coated with monolayer array of PS microspheres (with 1.59 µm in diameter) on one side, and inset is tilted view of a free-standing silver film coated by 2D PS CC. (c) Top-view SEM image of 2D HCP PS microspheres arrays on both sides of the silver film, and the inset shows the cross-sectional SEM image.

Fig. 2
Fig. 2

(a) The experimental transmission spectra for a planar metal film (black line) and a planar film coated by a 2D CC on one side (red line). (b) The corresponding calculated results for a planar film with 100 nm (black line) and for the 2D CC on one side (red line). (c) Calculated distributions of normalized electric fields (|E/E0|) for four transmission peaks at corresponding wavelengths of (b), marked as GM1, SPM1, GM2, and SPM2. White circles and rectangles outline the PS microsphere and the silver films.

Fig. 3
Fig. 3

(a) Measured transmission spectra for a pure planar silver film with about 100 nm thickness (black line), a planar film (about 100 nm) coated with 2D CC on only one side (blue line) and on both sides (red line). The blue line is plotted by the left hand axes to display its details clearly. (b) The corresponding calculated results for a planar silver film with 100 nm thickness (black line), the 2D CC on one side (blue line) and both sides (red line) of a planer silver film (100 nm), respectively. (c) The different calculated distributions of normalized electric fields of the PS microspheres arrays above and under the silver film at the wavelengths of four transmission peaks marked as GM1’, SPM1’, GM2’, and SPM2’ in (b). The color maps are in linear scale as shown at the right of top panel and the under panel, respectively.

Fig. 4
Fig. 4

Calculated transmission spectra of the 100-nm-thick-silver film coated by 2D HCP CCs on both sides. The relative lateral shifts of these two 2D CCs along x-direction (a) and y-direction (b) are set to be δ = 0 (black line), δ = 0.2 d (red line) and 0.4d (blue line) (here, d is the diameter of the PS microsphere), and the relative shift δ of xy-plane is described by the inset of (a). (c) Calculated transmission spectra as a function of δz, which is the distance between silver film and the bottom PS microsphere array along z-direction, as shown in the inset. The individual spectra are offset vertically by 1% from one another for clarity in (a), (b) and (c).

Metrics