Abstract

When linearly polarised light is transmitted through a spinning window, the plane of polarisation is rotated. This rotation arises through a phase change that is applied to the circularly polarised states corresponding to the spin angular momentum (SAM). Here we show an analogous effect for the orbital angular momentum (OAM), where a differential phase between the positive and negative modes (±) is observed as a rotation of the transmitted image. For normal materials, this rotation is on the order of a micro radian, but by using a slow-light medium, we show a rotation of a few degrees. We also note that, within the bounds of our experimental parameters, this rotation angle does not exceed the scale of the spatial features in the beam profile.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces

Philip Georgi, Christian Schlickriede, Guixin Li, Shuang Zhang, and Thomas Zentgraf
Optica 4(8) 1000-1005 (2017)

Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction

D. P. O’Dwyer, C. F. Phelan, Y. P. Rakovich, P. R. Eastham, J. G. Lunney, and J. F. Donegan
Opt. Express 18(16) 16480-16485 (2010)

Orbital angular momentum: origins, behavior and applications

Alison M. Yao and Miles J. Padgett
Adv. Opt. Photon. 3(2) 161-204 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Faraday, “Experimental researches in electricity - nineteenth series,” Philos. T. R. Soc. Lond. 136, 1–20 (1846).
    [Crossref]
  2. J. G. Dawber, “The Faraday effect, magnetic rotatory dispersion and magnetic circular dichroism,” Analyst 89, 755–762 (1964).
    [Crossref]
  3. G. Nienhuis, J. P. Woerdman, and I. Kuscer, “Magnetic and mechanical Faraday effects,” Phys. Rev. A 46, 7079–7092 (1992).
    [Crossref] [PubMed]
  4. M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
    [Crossref] [PubMed]
  5. L. Allen and M. J. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007).
    [Crossref]
  6. J. B. Götte, S. M. Barnett, and M. J. Padgett, “On the dragging of light by a rotating medium,” Proc. Roy. Soc. Lond. A 463, 2185–2194 (2007).
    [Crossref]
  7. R. V. Jones, “Rotary ‘aether drag’,” Proc. Roy. Soc. Lond. A 349, 423–439 (1976).
    [Crossref]
  8. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  9. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [Crossref]
  10. M. J. Padgett and J. Courtial, “Poincare-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999).
    [Crossref]
  11. R. Jones, “‘Fresnel aether drag’ in a transversely moving medium,” Proc. Roy. Soc. Lond. A 328, 337–352 (1972).
    [Crossref]
  12. M. A. Player, “On the dragging of the plane of polarization of light propagating in a rotating medium,” Proc. Roy. Soc. Lond. A 349, 441–445 (1976).
    [Crossref]
  13. J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
    [Crossref]
  14. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [Crossref] [PubMed]
  15. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room temperature solid,” Science 301, 200–202 (2003).
    [Crossref] [PubMed]
  16. S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
    [Crossref] [PubMed]
  17. R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009).
    [Crossref]
  18. J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998).
    [Crossref]
  19. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
    [Crossref] [PubMed]
  20. E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
    [Crossref]
  21. G. G. Kozlov, S. V. Poltavtsev, I. I. Ryzhov, and V. S. Zapasskii, “Comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038001 (2014).
    [Crossref]
  22. E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
    [Crossref]
  23. E. B. Aleksandrov and V. S. Zapasskii, “A saturable absorber, coherent population oscillations, and slow light,” Phys. Usp. 49, 1067–1075 (2006).
    [Crossref]

2014 (2)

G. G. Kozlov, S. V. Poltavtsev, I. I. Ryzhov, and V. S. Zapasskii, “Comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038001 (2014).
[Crossref]

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
[Crossref]

2013 (1)

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
[Crossref]

2011 (2)

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref] [PubMed]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

2009 (1)

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009).
[Crossref]

2008 (1)

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

2007 (3)

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

L. Allen and M. J. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007).
[Crossref]

J. B. Götte, S. M. Barnett, and M. J. Padgett, “On the dragging of light by a rotating medium,” Proc. Roy. Soc. Lond. A 463, 2185–2194 (2007).
[Crossref]

2006 (2)

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

E. B. Aleksandrov and V. S. Zapasskii, “A saturable absorber, coherent population oscillations, and slow light,” Phys. Usp. 49, 1067–1075 (2006).
[Crossref]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

1999 (1)

M. J. Padgett and J. Courtial, “Poincare-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999).
[Crossref]

1998 (1)

J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998).
[Crossref]

1992 (2)

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

G. Nienhuis, J. P. Woerdman, and I. Kuscer, “Magnetic and mechanical Faraday effects,” Phys. Rev. A 46, 7079–7092 (1992).
[Crossref] [PubMed]

1976 (2)

R. V. Jones, “Rotary ‘aether drag’,” Proc. Roy. Soc. Lond. A 349, 423–439 (1976).
[Crossref]

M. A. Player, “On the dragging of the plane of polarization of light propagating in a rotating medium,” Proc. Roy. Soc. Lond. A 349, 441–445 (1976).
[Crossref]

1972 (1)

R. Jones, “‘Fresnel aether drag’ in a transversely moving medium,” Proc. Roy. Soc. Lond. A 328, 337–352 (1972).
[Crossref]

1964 (1)

J. G. Dawber, “The Faraday effect, magnetic rotatory dispersion and magnetic circular dichroism,” Analyst 89, 755–762 (1964).
[Crossref]

1846 (1)

M. Faraday, “Experimental researches in electricity - nineteenth series,” Philos. T. R. Soc. Lond. 136, 1–20 (1846).
[Crossref]

Aleksandrov, E. B.

E. B. Aleksandrov and V. S. Zapasskii, “A saturable absorber, coherent population oscillations, and slow light,” Phys. Usp. 49, 1067–1075 (2006).
[Crossref]

Allen, L.

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

L. Allen and M. J. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007).
[Crossref]

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998).
[Crossref]

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Arnold, A. S.

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Barnett, S. M.

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

J. B. Götte, S. M. Barnett, and M. J. Padgett, “On the dragging of light by a rotating medium,” Proc. Roy. Soc. Lond. A 463, 2185–2194 (2007).
[Crossref]

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

Beijersbergen, M.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Boyd, R. W.

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
[Crossref]

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
[Crossref]

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref] [PubMed]

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Courtial, J.

M. J. Padgett and J. Courtial, “Poincare-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999).
[Crossref]

J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998).
[Crossref]

Dawber, J. G.

J. G. Dawber, “The Faraday effect, magnetic rotatory dispersion and magnetic circular dichroism,” Analyst 89, 755–762 (1964).
[Crossref]

Dholakia, K.

J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998).
[Crossref]

Ellinas, D.

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Faraday, M.

M. Faraday, “Experimental researches in electricity - nineteenth series,” Philos. T. R. Soc. Lond. 136, 1–20 (1846).
[Crossref]

Franke-Arnold, S.

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
[Crossref]

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
[Crossref]

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref] [PubMed]

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Gibson, G.

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
[Crossref]

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
[Crossref]

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref] [PubMed]

Girkin, J.

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

Girkin, J. M.

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Götte, J.

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

Götte, J. B.

J. B. Götte, S. M. Barnett, and M. J. Padgett, “On the dragging of light by a rotating medium,” Proc. Roy. Soc. Lond. A 463, 2185–2194 (2007).
[Crossref]

Jones, R.

R. Jones, “‘Fresnel aether drag’ in a transversely moving medium,” Proc. Roy. Soc. Lond. A 328, 337–352 (1972).
[Crossref]

Jones, R. V.

R. V. Jones, “Rotary ‘aether drag’,” Proc. Roy. Soc. Lond. A 349, 423–439 (1976).
[Crossref]

Kozlov, G. G.

G. G. Kozlov, S. V. Poltavtsev, I. I. Ryzhov, and V. S. Zapasskii, “Comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038001 (2014).
[Crossref]

Kuscer, I.

G. Nienhuis, J. P. Woerdman, and I. Kuscer, “Magnetic and mechanical Faraday effects,” Phys. Rev. A 46, 7079–7092 (1992).
[Crossref] [PubMed]

Leach, J.

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Lembessis, V. E.

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Nienhuis, G.

G. Nienhuis, J. P. Woerdman, and I. Kuscer, “Magnetic and mechanical Faraday effects,” Phys. Rev. A 46, 7079–7092 (1992).
[Crossref] [PubMed]

Ohberg, P.

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Öhberg, P.

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

Padgett, M. J.

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
[Crossref]

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
[Crossref]

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref] [PubMed]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

L. Allen and M. J. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007).
[Crossref]

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

J. B. Götte, S. M. Barnett, and M. J. Padgett, “On the dragging of light by a rotating medium,” Proc. Roy. Soc. Lond. A 463, 2185–2194 (2007).
[Crossref]

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

M. J. Padgett and J. Courtial, “Poincare-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999).
[Crossref]

J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998).
[Crossref]

Player, M. A.

M. A. Player, “On the dragging of the plane of polarization of light propagating in a rotating medium,” Proc. Roy. Soc. Lond. A 349, 441–445 (1976).
[Crossref]

Poltavtsev, S. V.

G. G. Kozlov, S. V. Poltavtsev, I. I. Ryzhov, and V. S. Zapasskii, “Comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038001 (2014).
[Crossref]

Robertson, D. A.

J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998).
[Crossref]

Ryzhov, I. I.

G. G. Kozlov, S. V. Poltavtsev, I. I. Ryzhov, and V. S. Zapasskii, “Comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038001 (2014).
[Crossref]

Shi, Z.

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
[Crossref]

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
[Crossref]

Spreeuw, R.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Whyte, G.

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

Wisniewski-Barker, E.

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
[Crossref]

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
[Crossref]

Woerdman, J.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Woerdman, J. P.

G. Nienhuis, J. P. Woerdman, and I. Kuscer, “Magnetic and mechanical Faraday effects,” Phys. Rev. A 46, 7079–7092 (1992).
[Crossref] [PubMed]

Wright, A.

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

Wright, A. J.

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

Zapasskii, V. S.

G. G. Kozlov, S. V. Poltavtsev, I. I. Ryzhov, and V. S. Zapasskii, “Comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038001 (2014).
[Crossref]

E. B. Aleksandrov and V. S. Zapasskii, “A saturable absorber, coherent population oscillations, and slow light,” Phys. Usp. 49, 1067–1075 (2006).
[Crossref]

Adv. Opt. Photon. (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

Analyst (1)

J. G. Dawber, “The Faraday effect, magnetic rotatory dispersion and magnetic circular dichroism,” Analyst 89, 755–762 (1964).
[Crossref]

J. Mod. Opt. (2)

L. Allen and M. J. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007).
[Crossref]

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009).
[Crossref]

New J. Phys. (3)

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Evidence of slow-light effects from rotary drag of structured beams,” New J. Phys. 15, 083020 (2013).
[Crossref]

G. G. Kozlov, S. V. Poltavtsev, I. I. Ryzhov, and V. S. Zapasskii, “Comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038001 (2014).
[Crossref]

E. Wisniewski-Barker, G. Gibson, S. Franke-Arnold, Z. Shi, R. W. Boyd, and M. J. Padgett, “Reply to comment on ‘Evidence of slow-light effects from rotary drag of structured beams’,” New J. Phys. 16, 038002 (2014).
[Crossref]

Opt. Express (1)

S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

M. J. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006).
[Crossref] [PubMed]

M. J. Padgett and J. Courtial, “Poincare-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999).
[Crossref]

Philos. T. R. Soc. Lond. (1)

M. Faraday, “Experimental researches in electricity - nineteenth series,” Philos. T. R. Soc. Lond. 136, 1–20 (1846).
[Crossref]

Phys. Rev. A (2)

G. Nienhuis, J. P. Woerdman, and I. Kuscer, “Magnetic and mechanical Faraday effects,” Phys. Rev. A 46, 7079–7092 (1992).
[Crossref] [PubMed]

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998).
[Crossref]

J. Leach, A. Wright, J. Götte, J. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘Aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Phys. Usp. (1)

E. B. Aleksandrov and V. S. Zapasskii, “A saturable absorber, coherent population oscillations, and slow light,” Phys. Usp. 49, 1067–1075 (2006).
[Crossref]

Proc. Roy. Soc. Lond. A (4)

J. B. Götte, S. M. Barnett, and M. J. Padgett, “On the dragging of light by a rotating medium,” Proc. Roy. Soc. Lond. A 463, 2185–2194 (2007).
[Crossref]

R. V. Jones, “Rotary ‘aether drag’,” Proc. Roy. Soc. Lond. A 349, 423–439 (1976).
[Crossref]

R. Jones, “‘Fresnel aether drag’ in a transversely moving medium,” Proc. Roy. Soc. Lond. A 328, 337–352 (1972).
[Crossref]

M. A. Player, “On the dragging of the plane of polarization of light propagating in a rotating medium,” Proc. Roy. Soc. Lond. A 349, 441–445 (1976).
[Crossref]

Science (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow-light medium,” Science 333, 65–67 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The superposition of polar states giving equatorial states with an orientation dependent on the relative phase between the polar states for (a) a Poincaré sphere for SAM and (b) a Bloch sphere for OAM.

Fig. 2
Fig. 2

Petal patterns created by a superposition of ± beams. The second and fourth lines have a phase shift, i, between the + and − beams, causing a 45 degree rotation of the petal pattern.

Fig. 3
Fig. 3

532 nm light passes through two spherical lenses to be expanded before arriving at the spatial light modulator (SLM). The beam is then focused onto the front face of a ruby window, which is spun about its axis by a motor. The light is imaged from the back of the ruby onto a screen and then captured by a camera. Petal patterns are made from superpositions of LG beams with different l values while the ruby window spins at ±19 Hz. Patterns shown in the inset are (from left to right) 2 petals from l = ±1; 3 petals from l = (+1, −2); 4 petals from l = ±2; and 5 petals from l = (+2, −3).

Fig. 4
Fig. 4

Rotation angle of petal patterns with N = 2 through 5 petals as a function of rotational speed while held at constant peak intensity. Patterns with different N saturate at different rotational speeds. Error bars represent the standard deviations of independent data runs.

Fig. 5
Fig. 5

Images of N =2–5 for unsaturated (low rotational frequency, first column) and saturated (high rotational frequency, second column) modulation frequencies with the ruby spinning counterclockwise (CCW) and clockwise (CW).

Fig. 6
Fig. 6

Fraction of a petal rotated by N = 2 through 5 petals as a function of rotational speed while held at constant peak intensity. Error bars represent the standard deviations of independent data runs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ θ = ( n g 1 n ϕ ) Ω L c ,

Metrics