Abstract

A compact versatile photoacoustic (PA) sensor for trace gas detection is reported. The sensor is based on an integrating sphere as the PA absorption cell with an organ pipe tube attached to increase the sensitivity of the PA sensor. The versatility and enhancement of the sensitivity of the PA signal is investigated by monitoring specific ro-vibrational lines of CO2 in the 2 μm wavelength region and of NO2 in the 405 nm region. The measured enhancement factor of the PA signal exceeds 1200, which is due to the acoustic resonance of the tube and the absorption enhancement of the integrating sphere relatively to a non-resonant single pass cell. It is observed that the background absorption signals are highly attenuated due to the thermal conduction and diffusion effects in the polytetrafluoroethylene cell walls. This demonstrates that careful choice of cell wall materials can be highly beneficial to the sensitivity of the PA sensor. These properties makes the sensor suitable for various practical sensor applications in the ultraviolet (UV) to the near infrared (NIR) wavelength region, including climate, environmental and industrial monitoring.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs

Jaakko Saarela, Tapio Sorvajärvi, Toni Laurila, and Juha Toivonen
Opt. Express 19(S4) A725-A732 (2011)

3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases

Ralf Bauer, George Stewart, Walter Johnstone, Euan Boyd, and Michael Lengden
Opt. Lett. 39(16) 4796-4799 (2014)

Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator

Mikael Lassen, Laurent Lamard, Yuyang Feng, Andre Peremans, and Jan C. Petersen
Opt. Lett. 41(17) 4118-4121 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Sigrist, Air Monitoring by Spectroscopic Techniques (John Wiley, 1994).
  2. M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
    [Crossref]
  3. C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Spec. Top. 153(1), 1–18 (2008).
    [Crossref]
  4. F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley, 2000).
  5. M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
    [Crossref]
  6. A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
    [Crossref]
  7. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [Crossref]
  8. K. H. Michaelian, Photoacoustic Infrared Spectroscopy, Chemical Analysis Series, J. D. Winefordner, ed. (John Wiley, 2003).
    [Crossref]
  9. V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibr. Spectrosc. 48(1), 16–21 (2008).
    [Crossref]
  10. J.-P. Besson, S. Schilt, and L. Thévenaz, “Sub-ppm multi-gas photoacoustic sensor,” Spectrochim. Acta A 63, 899–904 (2006).
    [Crossref]
  11. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley, 1980).
  12. M. Webber, M. Pushkarsky, and C. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42, 2119–2126 (2003).
    [Crossref] [PubMed]
  13. J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
    [Crossref]
  14. A. Miklos, S. C. Pei, and A. H. Kung, “Multipass acoustically open photoacoustic detector for trace gas measurements,” Appl. Opt. 45, 2529–2534 (2006).
    [Crossref] [PubMed]
  15. J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
    [Crossref] [PubMed]
  16. A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012).
    [Crossref]
  17. P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2140–2142 (1970).
    [Crossref] [PubMed]
  18. J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
    [Crossref] [PubMed]
  19. S. Tranchart, I. H. Bachir, and J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
    [Crossref] [PubMed]
  20. E. Hawe, E. Lewis, and C. Fitzpatrick, “Hazardous gas detection with an integrating sphere in the near-infrared, J. Phys. Conf. Ser. 15, 250–255 (2005).
    [Crossref]
  21. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2m diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157–162 (2007).
    [Crossref]
  22. E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, and P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006).
    [Crossref]
  23. R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
    [Crossref]
  24. H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
    [Crossref] [PubMed]
  25. A. G. Bell, “The production of sound by radiant energy,” Philos. Mag. 11, 510 (1881).
    [Crossref]
  26. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [Crossref]
  27. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3 (Springer, 2003).
    [Crossref]
  28. F. Harren and J. Reuss, Photoacoustic Spectroscopy, G. L. Trigg, ed. (Wiley-VCH, 1979).
  29. S. Schilt and L. Thevenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48, 154–162 (2006).
    [Crossref]
  30. J. N. Pitts, J. H. Sharp, and S. I. Chan, “Effects of wavelength and temperature on primary processes in the photolysis of nitrogen dioxide and a spectroscopic-photochemical determination of the dissociation energy,” J. Chem. Phys. 40, 3655–3662 (1964).
    [Crossref]
  31. N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
    [Crossref]
  32. J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19, 725–732 (2011).
    [Crossref]
  33. I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Estimation of light penetration depth in turbid media using laser speckles,” Opt. Express,  20(13), 13692–13701 (2012).
    [Crossref] [PubMed]
  34. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley, 1976).

2012 (2)

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012).
[Crossref]

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Estimation of light penetration depth in turbid media using laser speckles,” Opt. Express,  20(13), 13692–13701 (2012).
[Crossref] [PubMed]

2011 (2)

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
[Crossref] [PubMed]

J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19, 725–732 (2011).
[Crossref]

2010 (3)

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[Crossref]

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[Crossref]

J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

2009 (1)

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

2008 (3)

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Spec. Top. 153(1), 1–18 (2008).
[Crossref]

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibr. Spectrosc. 48(1), 16–21 (2008).
[Crossref]

2007 (1)

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2m diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157–162 (2007).
[Crossref]

2006 (5)

E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, and P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006).
[Crossref]

J.-P. Besson, S. Schilt, and L. Thévenaz, “Sub-ppm multi-gas photoacoustic sensor,” Spectrochim. Acta A 63, 899–904 (2006).
[Crossref]

A. Miklos, S. C. Pei, and A. H. Kung, “Multipass acoustically open photoacoustic detector for trace gas measurements,” Appl. Opt. 45, 2529–2534 (2006).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

S. Schilt and L. Thevenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48, 154–162 (2006).
[Crossref]

2005 (2)

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

E. Hawe, E. Lewis, and C. Fitzpatrick, “Hazardous gas detection with an integrating sphere in the near-infrared, J. Phys. Conf. Ser. 15, 250–255 (2005).
[Crossref]

2003 (1)

M. Webber, M. Pushkarsky, and C. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42, 2119–2126 (2003).
[Crossref] [PubMed]

2001 (1)

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[Crossref]

2000 (1)

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
[Crossref]

1996 (1)

S. Tranchart, I. H. Bachir, and J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
[Crossref] [PubMed]

1986 (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

1970 (1)

P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2140–2142 (1970).
[Crossref] [PubMed]

1964 (1)

J. N. Pitts, J. H. Sharp, and S. I. Chan, “Effects of wavelength and temperature on primary processes in the photolysis of nitrogen dioxide and a spectroscopic-photochemical determination of the dissociation energy,” J. Chem. Phys. 40, 3655–3662 (1964).
[Crossref]

1881 (1)

A. G. Bell, “The production of sound by radiant energy,” Philos. Mag. 11, 510 (1881).
[Crossref]

Bachir, I. H.

S. Tranchart, I. H. Bachir, and J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
[Crossref] [PubMed]

Barreiro, N.

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[Crossref]

Bartlome, R.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Bell, A. G.

A. G. Bell, “The production of sound by radiant energy,” Philos. Mag. 11, 510 (1881).
[Crossref]

Bernhardt, R.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[Crossref]

Besson, J.-P.

J.-P. Besson, S. Schilt, and L. Thévenaz, “Sub-ppm multi-gas photoacoustic sensor,” Spectrochim. Acta A 63, 899–904 (2006).
[Crossref]

Bird, R. B.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley, 1976).

Bonetti, Y.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012).
[Crossref]

Bozoki, Z.

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[Crossref]

Chambers, P.

E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, and P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006).
[Crossref]

Chan, S. I.

J. N. Pitts, J. H. Sharp, and S. I. Chan, “Effects of wavelength and temperature on primary processes in the photolysis of nitrogen dioxide and a spectroscopic-photochemical determination of the dissociation energy,” J. Chem. Phys. 40, 3655–3662 (1964).
[Crossref]

Chen, W.

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
[Crossref] [PubMed]

Cotti, G.

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley, 2000).

Demtroder, W.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3 (Springer, 2003).
[Crossref]

Destombes, J.-L.

S. Tranchart, I. H. Bachir, and J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
[Crossref] [PubMed]

Dooly, G.

E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, and P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006).
[Crossref]

Elterman, P.

P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2140–2142 (1970).
[Crossref] [PubMed]

Emmenegger, L.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012).
[Crossref]

Fitzpatrick, C.

E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, and P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006).
[Crossref]

E. Hawe, E. Lewis, and C. Fitzpatrick, “Hazardous gas detection with an integrating sphere in the near-infrared, J. Phys. Conf. Ser. 15, 250–255 (2005).
[Crossref]

Fonsen, J.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibr. Spectrosc. 48(1), 16–21 (2008).
[Crossref]

Gao, X.

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
[Crossref] [PubMed]

Gonzlez, M. G.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[Crossref]

Harren, F.

F. Harren and J. Reuss, Photoacoustic Spectroscopy, G. L. Trigg, ed. (Wiley-VCH, 1979).

Harren, F. M. J.

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley, 2000).

Hawe, E.

E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, and P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006).
[Crossref]

E. Hawe, E. Lewis, and C. Fitzpatrick, “Hazardous gas detection with an integrating sphere in the near-infrared, J. Phys. Conf. Ser. 15, 250–255 (2005).
[Crossref]

Hess, P.

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[Crossref]

Hodgkinson, J.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

Kamshilin, A. A.

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Estimation of light penetration depth in turbid media using laser speckles,” Opt. Express,  20(13), 13692–13701 (2012).
[Crossref] [PubMed]

Kauppinen, J.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibr. Spectrosc. 48(1), 16–21 (2008).
[Crossref]

Koskinen, V.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibr. Spectrosc. 48(1), 16–21 (2008).
[Crossref]

Kosterev, A. A.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2m diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157–162 (2007).
[Crossref]

Kung, A. H.

A. Miklos, S. C. Pei, and A. H. Kung, “Multipass acoustically open photoacoustic detector for trace gas measurements,” Appl. Opt. 45, 2529–2534 (2006).
[Crossref] [PubMed]

Laurila, T.

J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19, 725–732 (2011).
[Crossref]

Lewicki, R.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2m diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157–162 (2007).
[Crossref]

Lewis, E.

E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, and P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006).
[Crossref]

E. Hawe, E. Lewis, and C. Fitzpatrick, “Hazardous gas detection with an integrating sphere in the near-infrared, J. Phys. Conf. Ser. 15, 250–255 (2005).
[Crossref]

Lightfoot, E. N.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley, 1976).

Liu, K.

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
[Crossref] [PubMed]

Looser, H.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012).
[Crossref]

Manninen, A.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012).
[Crossref]

J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Marinov, D.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Masiyano, D.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

Michaelian, K. H.

K. H. Michaelian, Photoacoustic Infrared Spectroscopy, Chemical Analysis Series, J. D. Winefordner, ed. (John Wiley, 2003).
[Crossref]

Miklos, A.

A. Miklos, S. C. Pei, and A. H. Kung, “Multipass acoustically open photoacoustic detector for trace gas measurements,” Appl. Opt. 45, 2529–2534 (2006).
[Crossref] [PubMed]

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[Crossref]

Miridonov, S. V.

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Estimation of light penetration depth in turbid media using laser speckles,” Opt. Express,  20(13), 13692–13701 (2012).
[Crossref] [PubMed]

Nägele, M.

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
[Crossref]

Nippolainen, E.

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Estimation of light penetration depth in turbid media using laser speckles,” Opt. Express,  20(13), 13692–13701 (2012).
[Crossref] [PubMed]

Oomens, J.

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley, 2000).

Patel, C.

M. Webber, M. Pushkarsky, and C. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42, 2119–2126 (2003).
[Crossref] [PubMed]

Patel, C. K. N.

C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Spec. Top. 153(1), 1–18 (2008).
[Crossref]

Pei, S. C.

A. Miklos, S. C. Pei, and A. H. Kung, “Multipass acoustically open photoacoustic detector for trace gas measurements,” Appl. Opt. 45, 2529–2534 (2006).
[Crossref] [PubMed]

Peuriot, A.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[Crossref]

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[Crossref]

Pitts, J. N.

J. N. Pitts, J. H. Sharp, and S. I. Chan, “Effects of wavelength and temperature on primary processes in the photolysis of nitrogen dioxide and a spectroscopic-photochemical determination of the dissociation energy,” J. Chem. Phys. 40, 3655–3662 (1964).
[Crossref]

Pushkarsky, M.

M. Webber, M. Pushkarsky, and C. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42, 2119–2126 (2003).
[Crossref] [PubMed]

Reuss, J.

F. Harren and J. Reuss, Photoacoustic Spectroscopy, G. L. Trigg, ed. (Wiley-VCH, 1979).

Rey, J.

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Rey, J. M.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Rosencwaig, A.

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley, 1980).

Roth, K.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibr. Spectrosc. 48(1), 16–21 (2008).
[Crossref]

Saarela, J.

J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19, 725–732 (2011).
[Crossref]

J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Sand, J.

J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Santiago, G.

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[Crossref]

Santiago, G. D.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[Crossref]

Schilt, S.

J.-P. Besson, S. Schilt, and L. Thévenaz, “Sub-ppm multi-gas photoacoustic sensor,” Spectrochim. Acta A 63, 899–904 (2006).
[Crossref]

S. Schilt and L. Thevenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48, 154–162 (2006).
[Crossref]

Sharp, J. H.

J. N. Pitts, J. H. Sharp, and S. I. Chan, “Effects of wavelength and temperature on primary processes in the photolysis of nitrogen dioxide and a spectroscopic-photochemical determination of the dissociation energy,” J. Chem. Phys. 40, 3655–3662 (1964).
[Crossref]

Sidorov, I. S.

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Estimation of light penetration depth in turbid media using laser speckles,” Opt. Express,  20(13), 13692–13701 (2012).
[Crossref] [PubMed]

Sigrist, M.

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Sigrist, M. W.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
[Crossref]

M. W. Sigrist, Air Monitoring by Spectroscopic Techniques (John Wiley, 1994).

Slezak, V.

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[Crossref]

Slezak, V. B.

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[Crossref]

Sorvajarvi, T.

J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Sorvajärvi, T.

J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19, 725–732 (2011).
[Crossref]

Stewart, W. E.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley, 1976).

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

Tan, T.

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
[Crossref] [PubMed]

Tatam, R. P.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

te Lintel Hekkert, S.

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley, 2000).

Thevenaz, L.

S. Schilt and L. Thevenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48, 154–162 (2006).
[Crossref]

Thévenaz, L.

J.-P. Besson, S. Schilt, and L. Thévenaz, “Sub-ppm multi-gas photoacoustic sensor,” Spectrochim. Acta A 63, 899–904 (2006).
[Crossref]

Tittel, F. K.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2m diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157–162 (2007).
[Crossref]

Toivonen, J.

J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19, 725–732 (2011).
[Crossref]

J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Tranchart, S.

S. Tranchart, I. H. Bachir, and J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
[Crossref] [PubMed]

Tuzson, B.

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012).
[Crossref]

Vallespi, A.

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[Crossref]

Vogler, D.

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

Vogler, D. E.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Wächter, H.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Wang, L.

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
[Crossref] [PubMed]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Webber, M.

M. Webber, M. Pushkarsky, and C. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42, 2119–2126 (2003).
[Crossref] [PubMed]

Wysocki, G.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2m diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157–162 (2007).
[Crossref]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Yi, H.

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
[Crossref] [PubMed]

Appl. Opt. (5)

M. Webber, M. Pushkarsky, and C. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42, 2119–2126 (2003).
[Crossref] [PubMed]

P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2140–2142 (1970).
[Crossref] [PubMed]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009).
[Crossref] [PubMed]

S. Tranchart, I. H. Bachir, and J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996).
[Crossref] [PubMed]

A. Miklos, S. C. Pei, and A. H. Kung, “Multipass acoustically open photoacoustic detector for trace gas measurements,” Appl. Opt. 45, 2529–2534 (2006).
[Crossref] [PubMed]

Appl. Phys. B (5)

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2m diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157–162 (2007).
[Crossref]

A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, and L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012).
[Crossref]

J. Rey, D. Marinov, D. Vogler, and M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005).
[Crossref]

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000).
[Crossref]

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, and G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Spec. Top. 153(1), 1–18 (2008).
[Crossref]

Infrared Phys. Technol. (1)

S. Schilt and L. Thevenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48, 154–162 (2006).
[Crossref]

J. Chem. Phys. (1)

J. N. Pitts, J. H. Sharp, and S. I. Chan, “Effects of wavelength and temperature on primary processes in the photolysis of nitrogen dioxide and a spectroscopic-photochemical determination of the dissociation energy,” J. Chem. Phys. 40, 3655–3662 (1964).
[Crossref]

J. Phys. Conf. Ser. (1)

E. Hawe, E. Lewis, and C. Fitzpatrick, “Hazardous gas detection with an integrating sphere in the near-infrared, J. Phys. Conf. Ser. 15, 250–255 (2005).
[Crossref]

Opt. Express (2)

J. Saarela, T. Sorvajärvi, T. Laurila, and J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19, 725–732 (2011).
[Crossref]

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Estimation of light penetration depth in turbid media using laser speckles,” Opt. Express,  20(13), 13692–13701 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011).
[Crossref] [PubMed]

Philos. Mag. (1)

A. G. Bell, “The production of sound by radiant energy,” Philos. Mag. 11, 510 (1881).
[Crossref]

Proc. SPIE (1)

E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, and P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006).
[Crossref]

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

Rev. Sci. Instrum. (2)

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[Crossref]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Sens. Actuators B (1)

R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, and M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010).
[Crossref]

Sensors (1)

J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, and J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010).
[Crossref] [PubMed]

Spectrochim. Acta A (1)

J.-P. Besson, S. Schilt, and L. Thévenaz, “Sub-ppm multi-gas photoacoustic sensor,” Spectrochim. Acta A 63, 899–904 (2006).
[Crossref]

Vibr. Spectrosc. (1)

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibr. Spectrosc. 48(1), 16–21 (2008).
[Crossref]

Other (7)

M. W. Sigrist, Air Monitoring by Spectroscopic Techniques (John Wiley, 1994).

F. M. J. Harren, G. Cotti, J. Oomens, and S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley, 2000).

K. H. Michaelian, Photoacoustic Infrared Spectroscopy, Chemical Analysis Series, J. D. Winefordner, ed. (John Wiley, 2003).
[Crossref]

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley, 1980).

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3 (Springer, 2003).
[Crossref]

F. Harren and J. Reuss, Photoacoustic Spectroscopy, G. L. Trigg, ed. (Wiley-VCH, 1979).

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulations of the acoustic coupled system. (a) Acoustics pressure response as a function of frequency for the organ pipe tube. (b) Acoustics pressure response as a function of frequency for the sphere. The figure shows the 3D simulation of first three eigenfrequencies of the coupled sphere and cylindrical acoustic resonator measured at end of the tube. i) 743 Hz, ii) 2229 Hz and iii) 3716 Hz. The blue and red colors indicate the maximum and minimum acoustic pressure, with opposite phase. The white color is zero acoustic pressure. The corresponding experimental data is shown in Fig. 4.

Fig. 2
Fig. 2

(a) The experimental setup for CO2 monitoring consist of a distributed-feedback (DFB) diode laser emitting radiation at 2.004 μm, an integrating sphere with a diameter of 50.8 mm and two microphones attached to the integrating sphere. One directly on the integrating sphere and one attached via the 90 mm organ tube pipe. DAQ is a data acquisition card. (b) The setup for measuring NO2 include a 405 nm LED source and a lock-in amplifier connected to a DAQ card.

Fig. 3
Fig. 3

Enhancement factors of the integrating sphere based PA sensor for (a) CO2 and (b) NO2. The black curves are the data recorded by Mic2 at the end of the organ pipe while the red curves are the data recorded by Mic1, situated inside the sphere. The enhancement factors for the two cases are indicated.

Fig. 4
Fig. 4

Data for measurement on a 300 ppm NO2 mixture, SNR = 22 dB. (a) Sphere microphone PA signal (black curve) and background signal (red curve). (b) Tube microphone PA signal (black curve) and background signal (red curve) The eigenresonances are found at approximately 740 Hz and 2500 Hz for the tube microphone. (c) Monitoring of a 300 ppm NO2 concentration over 3.5 minutes resulting in a standard deviation of 0.9 ppm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S P A = S m P F α ,
M = ρ 0 1 ρ ¯ .

Metrics