Abstract

In this paper, we propose a metal-dielectric dual-wavelength spectral filtering structure based on symmetry-reduced double layer metallic gratings (SRDMG) coupled to a guided-mode dielectric resonator. The grating symmetry is reduced by alternatively shifting metal nanowires of the top layer metallic grating. Compared to a symmetric double layer metallic grating that usually provides one resonance dip, this SRDMG structure generates two remarkable narrow band transmission dips with a transmission peak in-between at normal incidence. The appearance of the two narrowband resonance dips is attributed to the excitation of different current modes in the metallic grating, leading to different guided mode resonances in the dielectric layer, which is induced by the structural symmetry breaking. Moreover, these two guided modes do not split under oblique incidence and a flat dispersion band over a small angular range can be obtained. The positions of two dips and the frequency gap between them can be controlled by adjusting the thickness of metallic grating without the need to modify the structure period and width, which is an easy method to tune resonance position and bandwidth, and make the fabrication of some filters more convenient. This work can be used to develop subwavelength metallic-grating-based multi-wavelength and narrow-band spectral filters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  2. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
    [CrossRef] [PubMed]
  3. Y.-T. Yoon, C.-H. Park, S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
    [CrossRef]
  4. C.-H. Park, Y.-T. Yoon, S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
    [CrossRef] [PubMed]
  5. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [CrossRef] [PubMed]
  6. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
    [CrossRef] [PubMed]
  7. Y. Liang, W. Peng, R. Hu, H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013).
    [CrossRef] [PubMed]
  8. F. Lemarchand, A. Sentenac, H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998).
    [CrossRef] [PubMed]
  9. T. Zentgraf, S. Zhang, R. F. Oulton, X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
    [CrossRef]
  10. Z. G. Dong, P.-G. Ni, J. Zhu, X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express 20(7), 7206–7211 (2012).
    [CrossRef] [PubMed]
  11. J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
    [CrossRef]
  12. J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
    [CrossRef]
  13. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [CrossRef] [PubMed]
  14. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
    [CrossRef] [PubMed]
  15. E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).
    [CrossRef] [PubMed]
  16. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31(4), 516–518 (2006).
    [CrossRef] [PubMed]
  17. Z. Marcet, J. W. Paster, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, H. B. Chan, “Controlling the phase delay of light transmitted through double-layer metallic subwavelength slit arrays,” Opt. Lett. 33(13), 1410–1412 (2008).
    [CrossRef] [PubMed]
  18. Z. S. Liu, R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14(8), 1091–1093 (2002).
    [CrossRef]
  19. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).
  20. Lumerical Solutions, http://www.lumerical.com .
  21. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986).
    [CrossRef]
  22. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [CrossRef] [PubMed]
  23. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  24. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
    [CrossRef]
  25. L. P. Wang, Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
    [CrossRef]

2013 (2)

2012 (3)

2011 (3)

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[CrossRef]

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

2010 (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

2009 (4)

L. P. Wang, Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

2008 (2)

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

2006 (1)

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

2002 (1)

Z. S. Liu, R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14(8), 1091–1093 (2002).
[CrossRef]

1998 (1)

1986 (1)

Bai, W.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[CrossRef]

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Bardou, N.

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Bouchon, P.

Bower, J. E.

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Cai, L.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[CrossRef]

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Carr, D. W.

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Chan, H. B.

Chen, X.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Cirelli, R. A.

Collin, S.

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).
[CrossRef] [PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Deschamps, J.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

Dong, Z. G.

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Ferry, E.

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Gan, Q.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[CrossRef]

Gaylord, T. K.

Ghenuche, P.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Giovannini, H.

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Guérineau, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

Haïdar, R.

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).
[CrossRef] [PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Héron, S.

Hu, R.

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Klemens, F.

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Lee, S.-S.

Y.-T. Yoon, C.-H. Park, S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[CrossRef]

C.-H. Park, Y.-T. Yoon, S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Lemarchand, F.

Liang, Y.

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Liu, Z. S.

Z. S. Liu, R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14(8), 1091–1093 (2002).
[CrossRef]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Magnusson, R.

Z. S. Liu, R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14(8), 1091–1093 (2002).
[CrossRef]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Mansfield, W. M.

Marcet, Z.

Martin, O. J. F.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Miner, J.

Miner, J. F.

Moharam, M. G.

Ni, P.-G.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Pai, C. S.

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Pardo, F.

Park, C.-H.

C.-H. Park, Y.-T. Yoon, S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Y.-T. Yoon, C.-H. Park, S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[CrossRef]

Paster, J. W.

Pelouard, J.-L.

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).
[CrossRef] [PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

Peng, W.

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Rommeluère, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Sakat, E.

Sentenac, A.

Song, G.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[CrossRef]

Tanner, D. B.

Taylor, J. A.

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Vincent, G.

E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).
[CrossRef] [PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

Wang, L. P.

L. P. Wang, Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[CrossRef]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Woo, K.

Xu, Y.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[CrossRef]

Yoon, Y.-T.

Y.-T. Yoon, C.-H. Park, S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[CrossRef]

C.-H. Park, Y.-T. Yoon, S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Zentgraf, T.

T. Zentgraf, S. Zhang, R. F. Oulton, X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Zhang, J.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[CrossRef]

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Zhang, S.

T. Zentgraf, S. Zhang, R. F. Oulton, X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Zhang, X.

Z. G. Dong, P.-G. Ni, J. Zhu, X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express 20(7), 7206–7211 (2012).
[CrossRef] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Zhang, Z. M.

L. P. Wang, Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, J.

Zou, H.

Appl. Phys. Express (1)

Y.-T. Yoon, C.-H. Park, S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[CrossRef]

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[CrossRef]

L. P. Wang, Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. S. Liu, R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14(8), 1091–1093 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. B (1)

T. Zentgraf, S. Zhang, R. F. Oulton, X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).

Lumerical Solutions, http://www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structure schematic of multiple wavelengths guided more resonance filter and its typical optical phenomenon. (a) The SRDMG structure with two different metallic gratings deposited on each side of a free-standing dielectric layer. (b) Cross-section of the SDMG and SRDMG structures and their structure parameters. (c) Calculated transmission spectra of SRDMG with normal incidence (red line) and oblique incidence (red dashed line) for TM polarized light.

Fig. 2
Fig. 2

(a) Dispersion relation for a dielectric planar waveguide with the thickness td = 250 nm. (b) The dependence of the resonant wavelength on wire width w for the SDMG structure. (c) Calculated transmission (blue line) and phase (red line) for the SRDMG structure. The resulting group index is shown in (d) together with the transmission.

Fig. 3
Fig. 3

Spatial distribution of magnetic field (color map) for the SRDMG structure at different wavelengths with the thickness of gold film tm = 20 nm. (a) λ1 = 1244 nm, (b) λ2 = 1276 nm. Spatial distribution of electric field (arrow map) for (c) λ1 = 1244 nm, (d) λ2 = 1276 nm. Spatial distribution of energy flow for (e) λ1 = 1244 nm, (f) λ2 = 1276 nm. Spatial distribution of x-component of current density for (g) λ1 = 1244 nm, (h) λ2 = 1276 nm. Red arrows indicate directions of the current flow in Figs. 3(g) and 3(h).

Fig. 4
Fig. 4

Calculated (a) reflection spectrum and (b) absorption spectrum of SRDMG with normal incidence for TM polarized light. Structure parameter is identical to that of Fig. 1(c).

Fig. 5
Fig. 5

Transmission spectra for the SRDMG structure with fixed w = 100 nm, td = 250 nm and P = 1000 nm. (a) at different incidence angle θ, (b) different lateral displacement .

Fig. 6
Fig. 6

(a) Transmission spectra for different structure at normal incidence with fixed w = 100 nm and td = 250 nm. The effect of the thickness of metallic grating on transmission spectra for (a) the SRDMG structure and (b) the SDMG structure with period P = 1000 nm. (c) The dependence of calculation transmission spectra on structure period with fixed w = 100 nm, td = 250 nm and tm = 20 nm.

Fig. 7
Fig. 7

Transmission spectra for the SRDMG structure with fixed w = 100 nm, td = 250 nm and P = 1000 nm at (a) thickness of metallic grating tm = 162 nm, and (b) thickness of metallic grating tm = 280 nm.

Fig. 8
Fig. 8

Spatial distribution of magnetic field for the SRDMG structure at different wavelengths with the thickness of gold film tm = 280 nm at normal incidence: (a) λ3 = 1500 nm, (b) λ4 = 1713 nm.

Fig. 9
Fig. 9

Spatial distribution of x-component of current density for (a) λ = 1276 nm and = 125 nm, (b) λ = 1244 nm and = 375 nm. There is only one dip in the above two structures. Red arrows indicate directions of the current flow in Figs. 9(a) and 9(b).

Fig. 10
Fig. 10

Double transmission dips on dependence of structural parameters of dielectric film. (a) The thickness of dielectric film. (b) The Refractive index of dielectric film. (c) The linear approximations between the gap of two dips and refractive index of dielectric layer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

mπ= t d n d 2 k 0 2 β 2 2 tan 1 [ ( n d / n 1 ) 2ρ ( β 2 n 1 2 k 0 2 ) / ( n d 2 k 0 2 β 2 ) ]
n g = c 0 dk dω = c 0 t d dϕ dω = λ 2 2π t d dϕ dλ

Metrics