Abstract

Lateral photovoltaic effect (LPE) can be used in position-sensitive detectors (PSDs) and has a wide application in a variety of optical transducers and sensors. In this report, a large LPE with sensitivity of 42mV/mm is observed in metal-oxide-semiconductor (MOS) structure of Cr/SiO2/Si. Through measuring current-voltage characteristics, we find that electron transport property in dark plays a key role and an appropriate metal thickness is crucial for obtaining a large LPE. This result is useful for applications and may explore a way to study the electron transport mechanism in nano-films’ MOS structures.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang
Opt. Express 16(6) 3798-3806 (2008)

Direct observation of lateral photovoltaic effect in nano-metal-films

C. Q. Yu, H. Wang, S. Q. Xiao, and Y. X. Xia
Opt. Express 17(24) 21712-21722 (2009)

Improved metal-semiconductor position detector with oscillating lateral photovoltaic effect

Chong Qi Yu and Hui Wang
Opt. Lett. 34(24) 3770-3772 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
    [Crossref] [PubMed]
  2. H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
    [Crossref] [PubMed]
  3. J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
    [Crossref]
  4. T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, “Spiral Terraces and Spin Frustration in Layered Antiferromagnetic Cr(001) films,” Phys. Rev. Lett. 95(20), 207205 (2005).
    [Crossref] [PubMed]
  5. P. Olsson, C. Domain, and J.-F. Guillemoles, “Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion: The Case of AlP:Cr,” Phys. Rev. Lett. 102(22), 227204 (2009).
    [Crossref] [PubMed]
  6. E. Fawcett, “Spin-density-wave antiferromagnetism in chromium,” Rev. Mod. Phys. 60(1), 209–283 (1988).
    [Crossref]
  7. R. K. Kummamuru and Y.-A. Soh, “Electrical effects of spin density wave quantization and magnetic domain walls in chromium,” Nature 452(7189), 859–863 (2008).
    [Crossref] [PubMed]
  8. O. S. Yurchenko, T. N. Bondarenko, Yu. P. Kolosvetov, and O. S. Yurchenko, “Powdering lower chromium carbide and nitride phases,” Powder Metallurgy Metal Ceram. 43, 201–204 (2004).
  9. D. I. Foustoukos and W. E. Seyfried., “Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts,” Science 304(5673), 1002–1005 (2004).
    [Crossref] [PubMed]
  10. W. Schottky, “Über den Entstehungsort der Photoelektronen in Kupfer-Kupferoxydul-Photozellen,” Phys. Z. 31, 913–925 (1930).
  11. J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474–483 (1957).
  12. J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1022–1026 (2001).
  13. J. Henry and J. Livingstone, “Optimizing the response of Schottky barrier position sensitive detectors,” J. Phys. D Appl. Phys. 37(22), 3180–3184 (2004).
    [Crossref]
  14. R. H. Willens, “Photoelectronic and electronic properties of Ti/Si amorphous superlattices,” Appl. Phys. Lett. 49(11), 663–665 (1986).
    [Crossref]
  15. S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal–semiconductor junctions of CoxMnyO films and Si,” J. Phys. D Appl. Phys. 40(18), 5580–5583 (2007).
    [Crossref]
  16. L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
    [Crossref] [PubMed]
  17. C. Q. Yu and H. Wang, “Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures,” Sensors 10(11), 10155–10180 (2010).
    [Crossref] [PubMed]
  18. K. J. Kaufmann, “Position-sensitive detectors develop into high-tech tailors,” Photon. Spectra 31, 167 (1997).
  19. C. Q. Yu and H. Wang, “Precise detection of two-dimensional displacement based on nonlinear lateral photovoltaic effect,” Opt. Lett. 35(15), 2514–2516 (2010).
    [Crossref] [PubMed]
  20. R. S. Markiewicz and L. A. Harris, “Two-dimensional resistivity of ultrathin metal films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
    [Crossref]
  21. J. I. Pankowe, Optical Processes in Semiconductors (Prentice-Hall, 1971).

2012 (1)

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

2011 (1)

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

2010 (3)

L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
[Crossref] [PubMed]

C. Q. Yu and H. Wang, “Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures,” Sensors 10(11), 10155–10180 (2010).
[Crossref] [PubMed]

C. Q. Yu and H. Wang, “Precise detection of two-dimensional displacement based on nonlinear lateral photovoltaic effect,” Opt. Lett. 35(15), 2514–2516 (2010).
[Crossref] [PubMed]

2009 (2)

P. Olsson, C. Domain, and J.-F. Guillemoles, “Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion: The Case of AlP:Cr,” Phys. Rev. Lett. 102(22), 227204 (2009).
[Crossref] [PubMed]

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

2008 (1)

R. K. Kummamuru and Y.-A. Soh, “Electrical effects of spin density wave quantization and magnetic domain walls in chromium,” Nature 452(7189), 859–863 (2008).
[Crossref] [PubMed]

2007 (1)

S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal–semiconductor junctions of CoxMnyO films and Si,” J. Phys. D Appl. Phys. 40(18), 5580–5583 (2007).
[Crossref]

2005 (1)

T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, “Spiral Terraces and Spin Frustration in Layered Antiferromagnetic Cr(001) films,” Phys. Rev. Lett. 95(20), 207205 (2005).
[Crossref] [PubMed]

2004 (3)

O. S. Yurchenko, T. N. Bondarenko, Yu. P. Kolosvetov, and O. S. Yurchenko, “Powdering lower chromium carbide and nitride phases,” Powder Metallurgy Metal Ceram. 43, 201–204 (2004).

D. I. Foustoukos and W. E. Seyfried., “Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts,” Science 304(5673), 1002–1005 (2004).
[Crossref] [PubMed]

J. Henry and J. Livingstone, “Optimizing the response of Schottky barrier position sensitive detectors,” J. Phys. D Appl. Phys. 37(22), 3180–3184 (2004).
[Crossref]

2001 (1)

J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1022–1026 (2001).

1997 (1)

K. J. Kaufmann, “Position-sensitive detectors develop into high-tech tailors,” Photon. Spectra 31, 167 (1997).

1988 (1)

E. Fawcett, “Spin-density-wave antiferromagnetism in chromium,” Rev. Mod. Phys. 60(1), 209–283 (1988).
[Crossref]

1986 (1)

R. H. Willens, “Photoelectronic and electronic properties of Ti/Si amorphous superlattices,” Appl. Phys. Lett. 49(11), 663–665 (1986).
[Crossref]

1981 (1)

R. S. Markiewicz and L. A. Harris, “Two-dimensional resistivity of ultrathin metal films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
[Crossref]

1957 (1)

J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474–483 (1957).

1930 (1)

W. Schottky, “Über den Entstehungsort der Photoelektronen in Kupfer-Kupferoxydul-Photozellen,” Phys. Z. 31, 913–925 (1930).

Apodaca, M. M.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Bishop, K. J.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Bondarenko, T. N.

O. S. Yurchenko, T. N. Bondarenko, Yu. P. Kolosvetov, and O. S. Yurchenko, “Powdering lower chromium carbide and nitride phases,” Powder Metallurgy Metal Ceram. 43, 201–204 (2004).

Cai, Z.

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

Divan, R.

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

Domain, C.

P. Olsson, C. Domain, and J.-F. Guillemoles, “Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion: The Case of AlP:Cr,” Phys. Rev. Lett. 102(22), 227204 (2009).
[Crossref] [PubMed]

Du, L.

L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
[Crossref] [PubMed]

Fawcett, E.

E. Fawcett, “Spin-density-wave antiferromagnetism in chromium,” Rev. Mod. Phys. 60(1), 209–283 (1988).
[Crossref]

Foustoukos, D. I.

D. I. Foustoukos and W. E. Seyfried., “Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts,” Science 304(5673), 1002–1005 (2004).
[Crossref] [PubMed]

Gabor, N. M.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Grzybowski, B. A.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Guillemoles, J.-F.

P. Olsson, C. Domain, and J.-F. Guillemoles, “Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion: The Case of AlP:Cr,” Phys. Rev. Lett. 102(22), 227204 (2009).
[Crossref] [PubMed]

Harris, L. A.

R. S. Markiewicz and L. A. Harris, “Two-dimensional resistivity of ultrathin metal films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
[Crossref]

Henry, J.

J. Henry and J. Livingstone, “Optimizing the response of Schottky barrier position sensitive detectors,” J. Phys. D Appl. Phys. 37(22), 3180–3184 (2004).
[Crossref]

J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1022–1026 (2001).

Iguchi, Y.

T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, “Spiral Terraces and Spin Frustration in Layered Antiferromagnetic Cr(001) films,” Phys. Rev. Lett. 95(20), 207205 (2005).
[Crossref] [PubMed]

Isaacs, E. D.

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

Jarillo-Herrero, P.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Kaufmann, K. J.

K. J. Kaufmann, “Position-sensitive detectors develop into high-tech tailors,” Photon. Spectra 31, 167 (1997).

Kawagoe, T.

T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, “Spiral Terraces and Spin Frustration in Layered Antiferromagnetic Cr(001) films,” Phys. Rev. Lett. 95(20), 207205 (2005).
[Crossref] [PubMed]

Kim, H. C.

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

Klajn, R.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Kolosvetov, Yu. P.

O. S. Yurchenko, T. N. Bondarenko, Yu. P. Kolosvetov, and O. S. Yurchenko, “Powdering lower chromium carbide and nitride phases,” Powder Metallurgy Metal Ceram. 43, 201–204 (2004).

Kowalczyk, B.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Kummamuru, R. K.

R. K. Kummamuru and Y.-A. Soh, “Electrical effects of spin density wave quantization and magnetic domain walls in chromium,” Nature 452(7189), 859–863 (2008).
[Crossref] [PubMed]

Levitov, L. S.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Livingstone, J.

J. Henry and J. Livingstone, “Optimizing the response of Schottky barrier position sensitive detectors,” J. Phys. D Appl. Phys. 37(22), 3180–3184 (2004).
[Crossref]

J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1022–1026 (2001).

Logan, J. M.

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

Ma, Q.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Markiewicz, R. S.

R. S. Markiewicz and L. A. Harris, “Two-dimensional resistivity of ultrathin metal films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
[Crossref]

Miyamachi, T.

T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, “Spiral Terraces and Spin Frustration in Layered Antiferromagnetic Cr(001) films,” Phys. Rev. Lett. 95(20), 207205 (2005).
[Crossref] [PubMed]

Nair, N. L.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Nakanishi, H.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Nitzan, A.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Olsson, P.

P. Olsson, C. Domain, and J.-F. Guillemoles, “Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion: The Case of AlP:Cr,” Phys. Rev. Lett. 102(22), 227204 (2009).
[Crossref] [PubMed]

Rosenmann, D.

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

Schottky, W.

W. Schottky, “Über den Entstehungsort der Photoelektronen in Kupfer-Kupferoxydul-Photozellen,” Phys. Z. 31, 913–925 (1930).

Seyfried, W. E.

D. I. Foustoukos and W. E. Seyfried., “Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts,” Science 304(5673), 1002–1005 (2004).
[Crossref] [PubMed]

Shpyrko, O. G.

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

Soh, Y.-A.

R. K. Kummamuru and Y.-A. Soh, “Electrical effects of spin density wave quantization and magnetic domain walls in chromium,” Nature 452(7189), 859–863 (2008).
[Crossref] [PubMed]

Song, J. C.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Stoddart, J. F.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Suga, S.

T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, “Spiral Terraces and Spin Frustration in Layered Antiferromagnetic Cr(001) films,” Phys. Rev. Lett. 95(20), 207205 (2005).
[Crossref] [PubMed]

Taniguchi, T.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Taychatanapat, T.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Tretiakov, K. V.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Wallmark, J. T.

J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474–483 (1957).

Wang, H.

L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
[Crossref] [PubMed]

C. Q. Yu and H. Wang, “Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures,” Sensors 10(11), 10155–10180 (2010).
[Crossref] [PubMed]

C. Q. Yu and H. Wang, “Precise detection of two-dimensional displacement based on nonlinear lateral photovoltaic effect,” Opt. Lett. 35(15), 2514–2516 (2010).
[Crossref] [PubMed]

S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal–semiconductor junctions of CoxMnyO films and Si,” J. Phys. D Appl. Phys. 40(18), 5580–5583 (2007).
[Crossref]

Watanabe, K.

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Weiss, E. A.

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

Willens, R. H.

R. H. Willens, “Photoelectronic and electronic properties of Ti/Si amorphous superlattices,” Appl. Phys. Lett. 49(11), 663–665 (1986).
[Crossref]

Xia, Y. X.

S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal–semiconductor junctions of CoxMnyO films and Si,” J. Phys. D Appl. Phys. 40(18), 5580–5583 (2007).
[Crossref]

Xiao, S. Q.

S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal–semiconductor junctions of CoxMnyO films and Si,” J. Phys. D Appl. Phys. 40(18), 5580–5583 (2007).
[Crossref]

Yamasaki, A.

T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, “Spiral Terraces and Spin Frustration in Layered Antiferromagnetic Cr(001) films,” Phys. Rev. Lett. 95(20), 207205 (2005).
[Crossref] [PubMed]

Yu, C. Q.

C. Q. Yu and H. Wang, “Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures,” Sensors 10(11), 10155–10180 (2010).
[Crossref] [PubMed]

C. Q. Yu and H. Wang, “Precise detection of two-dimensional displacement based on nonlinear lateral photovoltaic effect,” Opt. Lett. 35(15), 2514–2516 (2010).
[Crossref] [PubMed]

Yurchenko, O. S.

O. S. Yurchenko, T. N. Bondarenko, Yu. P. Kolosvetov, and O. S. Yurchenko, “Powdering lower chromium carbide and nitride phases,” Powder Metallurgy Metal Ceram. 43, 201–204 (2004).

O. S. Yurchenko, T. N. Bondarenko, Yu. P. Kolosvetov, and O. S. Yurchenko, “Powdering lower chromium carbide and nitride phases,” Powder Metallurgy Metal Ceram. 43, 201–204 (2004).

Zhao, Z. C.

S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal–semiconductor junctions of CoxMnyO films and Si,” J. Phys. D Appl. Phys. 40(18), 5580–5583 (2007).
[Crossref]

Adv. Mater. (1)

J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1022–1026 (2001).

Appl. Phys. Lett. (2)

R. H. Willens, “Photoelectronic and electronic properties of Ti/Si amorphous superlattices,” Appl. Phys. Lett. 49(11), 663–665 (1986).
[Crossref]

J. M. Logan, H. C. Kim, D. Rosenmann, Z. Cai, R. Divan, O. G. Shpyrko, and E. D. Isaacs, “Antiferromagnetic domain wall engineering in chromium films,” Appl. Phys. Lett. 100(19), 192405 (2012).
[Crossref]

J. Phys. D Appl. Phys. (2)

S. Q. Xiao, H. Wang, Z. C. Zhao, and Y. X. Xia, “Large lateral photoeffect observed in metal–semiconductor junctions of CoxMnyO films and Si,” J. Phys. D Appl. Phys. 40(18), 5580–5583 (2007).
[Crossref]

J. Henry and J. Livingstone, “Optimizing the response of Schottky barrier position sensitive detectors,” J. Phys. D Appl. Phys. 37(22), 3180–3184 (2004).
[Crossref]

Nature (2)

H. Nakanishi, K. J. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles,” Nature 460(7253), 371–375 (2009).
[Crossref] [PubMed]

R. K. Kummamuru and Y.-A. Soh, “Electrical effects of spin density wave quantization and magnetic domain walls in chromium,” Nature 452(7189), 859–863 (2008).
[Crossref] [PubMed]

Opt. Express (1)

L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

C. Q. Yu and H. Wang, “Precise detection of two-dimensional displacement based on nonlinear lateral photovoltaic effect,” Opt. Lett. 35(15), 2514–2516 (2010).
[Crossref] [PubMed]

Photon. Spectra (1)

K. J. Kaufmann, “Position-sensitive detectors develop into high-tech tailors,” Photon. Spectra 31, 167 (1997).

Phys. Rev. Lett. (3)

R. S. Markiewicz and L. A. Harris, “Two-dimensional resistivity of ultrathin metal films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
[Crossref]

T. Kawagoe, Y. Iguchi, T. Miyamachi, A. Yamasaki, and S. Suga, “Spiral Terraces and Spin Frustration in Layered Antiferromagnetic Cr(001) films,” Phys. Rev. Lett. 95(20), 207205 (2005).
[Crossref] [PubMed]

P. Olsson, C. Domain, and J.-F. Guillemoles, “Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion: The Case of AlP:Cr,” Phys. Rev. Lett. 102(22), 227204 (2009).
[Crossref] [PubMed]

Phys. Z. (1)

W. Schottky, “Über den Entstehungsort der Photoelektronen in Kupfer-Kupferoxydul-Photozellen,” Phys. Z. 31, 913–925 (1930).

Powder Metallurgy Metal Ceram. (1)

O. S. Yurchenko, T. N. Bondarenko, Yu. P. Kolosvetov, and O. S. Yurchenko, “Powdering lower chromium carbide and nitride phases,” Powder Metallurgy Metal Ceram. 43, 201–204 (2004).

Proc. IRE (1)

J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474–483 (1957).

Rev. Mod. Phys. (1)

E. Fawcett, “Spin-density-wave antiferromagnetism in chromium,” Rev. Mod. Phys. 60(1), 209–283 (1988).
[Crossref]

Science (2)

D. I. Foustoukos and W. E. Seyfried., “Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts,” Science 304(5673), 1002–1005 (2004).
[Crossref] [PubMed]

N. M. Gabor, J. C. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Sensors (1)

C. Q. Yu and H. Wang, “Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures,” Sensors 10(11), 10155–10180 (2010).
[Crossref] [PubMed]

Other (1)

J. I. Pankowe, Optical Processes in Semiconductors (Prentice-Hall, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the LPV measurement set-up. L is the distance between two ohmic contacts A and B. x is the laser position. (b) Energy bands diagram of the Cr/SiO2/Si MOS structure.

Fig. 2
Fig. 2

(a) Lateral photovoltages on metal side as a function of light (635 nm and 5 mW) position in Cr/SiO2(1.2 nm)/Si structure of different Cr thickness with contacts’ distance of 1.1mm. The inset shows that sensitivity is exponential decay with contacts’ distance L in the Cr(5nm)/SiO2(1.2 nm)/Si structure.(b) The sensitivity of LPE with different Cr thickness.

Fig. 3
Fig. 3

(a) Current-Voltage characteristics of different Cr thickness (3nm, 4nm, 5nm, 7nm, and 9nm). (b) Sensitivity as a function of conductance.

Fig. 4
Fig. 4

(a) LPV decreases with laser position as it moves outside of ohmic contact B. The inset is the schematic of the LPV measurement. The condition is same with that measured in Fig. 2(a). (b) For L = 6.5mm, nonlinear LPV changes with laser position.

Fig. 5
Fig. 5

(a) LPV measurement in MOS structure of Cr(5nm)/SiO2/Si as a function of laser wavelength with 5mW laser power. (b) LPV measurement in MOS structure of Cr(5nm)/SiO2/Si as a function of laser power with 635nm laser wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D m d 2 N(r) d r 2 = N(r) τ m ,N(r)=N(0)exp( r λ m )
LP V m = K m N(0)[ exp( | L 2 x | λ m )exp( | L 2 +x | λ m ) ] 2 K m N(0) λ m exp( L/2 λ m )x
Sensitivity= d(LP V m ) dx = 2 K m N(0) α σ exp( L/2 α σ )

Metrics