Abstract

We experimentally investigate the transmission performance of 80 × 112-Gb/s polarization-division-multiplexed quadrature phase shift keying (PDM-QPSK) signals over large effective area fiber and standard single mode fiber (SSMF) links with Raman amplification. The large effective area fiber offers higher optimum launch power and longer reach than SSMF. The maximum reach of 5200-km is obtained using large effective area fiber. The Gaussian noise (GN) model is explored to fit with experimental data for optimum power.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000km transmission of 50GHz spaced, 10x494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC/NFOEC 2012, Los Angeles, California, Mar. (2012), PDP5C.6.
    [CrossRef]
  2. X. Liu, S. Chandrasekhar, T. Lotz, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar_modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” in Proc. OFC/NFOEC 2012, Los Angeles, California, Mar. (2012), PDP5B.3.
    [CrossRef]
  3. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. of ECOC 2012, Turin, Italy, Sept. (2012), PDP2.2.
  4. Optical Internetworking Forum, 100G Ultra Long Haul DWDM Framework Document.
  5. O. Bertran Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Impact of nonlinear impairments on the tolerance to PMD of 100Gb/s PDM-QPSK data processed in a coherent receiver,” in Proc. of ECOC 2008, Brussels, Belgium, Sept. (2008), We.3.E.1.
    [CrossRef]
  6. C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011).
    [CrossRef] [PubMed]
  7. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-Erbium amplification and coherent detection,” in Proc. of OFC/NFOEC 2009, San Diego, California, Mar. (2009), PDPB6.
    [CrossRef]
  8. Y. Yamamoto, M. Hirano, K. Kuwahara, and T. Sasakiet, “OSNR-enhancing pure-silica-core fiber with large effective area and low attenuation,” in Proc. of OFC/NFOEC 2010, San Diego, California, Mar. (2010), OTuI2.
    [CrossRef]
  9. B. Zhu, S. Chandrasekhar, X. Liu, D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photon. Technol. Lett. 23(19), 1400–1402 (2011).
    [CrossRef]
  10. P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightwave Technol. 30(24), 3857–3879 (2012).
    [CrossRef]
  11. J.-X. Cai, H. Zhang, H. G. Batshon, M. Mazurczyk, O. V. Sinkin, D. G. Foursa, A. N. Pilipetskii, G. Mohs, N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” J. Lightwave Technol. 32(4), 832–839 (2014).
  12. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  13. P. Parolari, L. Marazzi, L. Bernardini, M. Martinelli, “Double Rayleigh scattering noise in lumped and distributed Raman amplifiers,” J. Lightwave Technol. 21(10), 2224–2228 (2003).
    [CrossRef]

2014 (1)

2012 (1)

2011 (2)

B. Zhu, S. Chandrasekhar, X. Liu, D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photon. Technol. Lett. 23(19), 1400–1402 (2011).
[CrossRef]

C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011).
[CrossRef] [PubMed]

2008 (1)

2003 (1)

Batshon, H. G.

Bergano, N. S.

Bernardini, L.

Cai, J.-X.

Chandrasekhar, S.

B. Zhu, S. Chandrasekhar, X. Liu, D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photon. Technol. Lett. 23(19), 1400–1402 (2011).
[CrossRef]

Foursa, D. G.

Liu, X.

B. Zhu, S. Chandrasekhar, X. Liu, D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photon. Technol. Lett. 23(19), 1400–1402 (2011).
[CrossRef]

Marazzi, L.

Martinelli, M.

Mazurczyk, M.

Mohs, G.

Parolari, P.

Peckham, D. W.

B. Zhu, S. Chandrasekhar, X. Liu, D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photon. Technol. Lett. 23(19), 1400–1402 (2011).
[CrossRef]

Pilipetskii, A. N.

Poggiolini, P.

Savory, S. J.

Sinkin, O. V.

Xie, C.

Zhang, H.

Zhu, B.

B. Zhu, S. Chandrasekhar, X. Liu, D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photon. Technol. Lett. 23(19), 1400–1402 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Zhu, S. Chandrasekhar, X. Liu, D. W. Peckham, “Transmission performance of a 485-Gb/s CO-OFDM superchannel with PDM-16QAM subcarriers over ULAF and SSMF-based links,” IEEE Photon. Technol. Lett. 23(19), 1400–1402 (2011).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (2)

Other (7)

X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson, “4000km transmission of 50GHz spaced, 10x494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery,” in Proc. OFC/NFOEC 2012, Los Angeles, California, Mar. (2012), PDP5C.6.
[CrossRef]

X. Liu, S. Chandrasekhar, T. Lotz, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar_modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” in Proc. OFC/NFOEC 2012, Los Angeles, California, Mar. (2012), PDP5B.3.
[CrossRef]

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. of ECOC 2012, Turin, Italy, Sept. (2012), PDP2.2.

Optical Internetworking Forum, 100G Ultra Long Haul DWDM Framework Document.

O. Bertran Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Impact of nonlinear impairments on the tolerance to PMD of 100Gb/s PDM-QPSK data processed in a coherent receiver,” in Proc. of ECOC 2008, Brussels, Belgium, Sept. (2008), We.3.E.1.
[CrossRef]

G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-Erbium amplification and coherent detection,” in Proc. of OFC/NFOEC 2009, San Diego, California, Mar. (2009), PDPB6.
[CrossRef]

Y. Yamamoto, M. Hirano, K. Kuwahara, and T. Sasakiet, “OSNR-enhancing pure-silica-core fiber with large effective area and low attenuation,” in Proc. of OFC/NFOEC 2010, San Diego, California, Mar. (2010), OTuI2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

System setup diagram for 112-Gb/s DWDM transmission comparison experiment with recirculating loop. ECL: external cavity laser, AWG: arrayed waveguide grating, QPSK: quadrature phase shift keying, PC: polarization controller, PBC: polarization bean combiner, IL: Interleaver, EDFA: erbium doped fiber amplifier, SW: switch, GE: gain equalizer, WDM: wavelength division multiplexer, CO-pump: co-propagation pump, CT-pump: counter propagation pump. Loop Syn. PC: loop synchronous polarization controller, OLO: optical local oscillator, PD: photodiode. DSP: digital signal processing.

Fig. 2
Fig. 2

Back to back Q factor of channel #38 in single channel and WDM configuration.

Fig. 3
Fig. 3

Q-factor of channel #38 as a function of signal launch power for SLA + and SSMF system. The markers represent experiment results. The solid lines are results of GN model fitting.

Fig. 4
Fig. 4

Q-factor and OSNR of SLA + and SSMF links at reach of 3200-km and 5200-km.

Fig. 5
Fig. 5

Q-factor as a function of transmission distance for SLA + system.

Tables (2)

Tables Icon

Table 1 Key Fiber Parameters

Tables Icon

Table 2 Comparison of Measured Q-factor and OSNR for SLA + and SSMF Links

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OSN R effective = P ch P ASE + P NLI = P ch P ASE + η 0 P ch 3 = α P launch P ASE +η P launch 3

Metrics