Abstract

We present a simple method for narrowing the intrinsic Lorentzian linewidth of a commercial ultraviolet grating extended-cavity diode laser (TOPTICA DL Pro) using weak optical feedback from a long external cavity. We achieve a suppression in frequency noise spectral density of 20 dB measured at frequencies around 1 MHz, corresponding to the narrowing of the intrinsic Lorentzian linewidth from 200 kHz to 2 kHz. Provided additional active low-frequency noise suppression and long-term drift compensation, the system is suitable for experiments requiring a tunable ultraviolet laser with narrow linewidth and low high-frequency noise, such as precision spectroscopy, optical clocks, and quantum information science experiments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
    [CrossRef]
  2. H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45, 9191–9197 (2006).
    [CrossRef] [PubMed]
  3. B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987).
    [CrossRef] [PubMed]
  4. J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, K. Hayasaka, “Compact, filtered diode laser system for precision spectroscopy,” Opt. Lett. 32, 572–574 (2007).
    [CrossRef] [PubMed]
  5. Y. Zhao, Y. Peng, T. Yang, Y. Li, Q. Wang, F. Meng, J. Cao, Z. Fang, T. Li, E. Zang, “External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback,” Opt. Lett. 36, 34–36 (2011).
    [CrossRef] [PubMed]
  6. K. Hayasaka, “Modulation-free optical locking of an external-cavity diode laser to a filter cavity,” Opt. Lett. 36, 2188–2190 (2011).
    [CrossRef] [PubMed]
  7. D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
    [CrossRef] [PubMed]
  8. Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, E. Zang, “High-finesse cavity external optical feedback DFB laser with hertz relative linewidth,” Opt. Lett. 37, 4729–4731 (2012).
    [CrossRef] [PubMed]
  9. Q. Lin, M. A. Van Camp, H. Zhang, B. Jelenković, V. Vuletić, “Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth,” Opt. Lett. 37, 1989–1991 (2012).
    [CrossRef] [PubMed]
  10. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10(−15),” Opt. Lett. 32, 641–643 (2007).
    [CrossRef] [PubMed]
  11. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
    [CrossRef]
  12. F. Kéfélian, H. Jiang, P. Lemonde, G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett. 34, 914–916 (2009).
    [CrossRef] [PubMed]
  13. T. Savard, K. OHara, J. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095–R1098 (1997).
    [CrossRef]
  14. T. Nazarova, C. Lisdat, F. Riehle, U. Sterr, “Low-frequency-noise diode laser for atom interferometry,” J. Opt. Soc. Am. B 25, 1632–1638 (2008).
    [CrossRef]
  15. D. J. Wineland, “Quantum information processing and quantum control with trapped atomic ions,” Phys. Scripta T137, 014007 (2009).
    [CrossRef]
  16. G. Di Domenico, S. Schilt, P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010).
    [CrossRef] [PubMed]
  17. R. Tkach, A. Chraplyvy, “Regimes of feedback effects in 1.5um distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
    [CrossRef]
  18. Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
    [CrossRef]
  19. C. Henry, R. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
    [CrossRef]

2012

2011

2010

G. Di Domenico, S. Schilt, P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010).
[CrossRef] [PubMed]

Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
[CrossRef]

2009

2008

T. Nazarova, C. Lisdat, F. Riehle, U. Sterr, “Low-frequency-noise diode laser for atom interferometry,” J. Opt. Soc. Am. B 25, 1632–1638 (2008).
[CrossRef]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

2007

2006

1997

T. Savard, K. OHara, J. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095–R1098 (1997).
[CrossRef]

1995

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

1987

1986

C. Henry, R. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
[CrossRef]

R. Tkach, A. Chraplyvy, “Regimes of feedback effects in 1.5um distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

Alnis, J.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

Blatt, S.

Boyd, M. M.

Brown, K. R.

Cao, J.

Cao, S.

Cetina, M.

Chraplyvy, A.

R. Tkach, A. Chraplyvy, “Regimes of feedback effects in 1.5um distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

Chuang, I. L.

Dahmani, B.

Di Domenico, G.

Drullinger, R.

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Fang, Z.

Foreman, S. M.

Hänsch, T. W.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Hayasaka, K.

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Henry, C.

C. Henry, R. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
[CrossRef]

Hollberg, L.

Huang, X.

Jelenkovic, B.

Jiang, H.

Kazarinov, R.

C. Henry, R. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
[CrossRef]

Kéfélian, F.

Kolachevsky, N.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Labaziewicz, J.

Lemonde, P.

Li, T.

Li, Y.

Lin, B.

Lin, Q.

Lin, Y.

Lin, Y.-J.

Lisdat, C.

Lison, F.

Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
[CrossRef]

Loh, H.

Lu, Z.

Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
[CrossRef]

Ludlow, A. D.

Matveev, A.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

Meng, F.

Nazarova, T.

Notcutt, M.

OHara, K.

T. Savard, K. OHara, J. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095–R1098 (1997).
[CrossRef]

Peng, Y.

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Richerme, P.

Riehle, F.

Santarelli, G.

Savard, T.

T. Savard, K. OHara, J. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095–R1098 (1997).
[CrossRef]

Schilt, S.

Scholten, R. E.

D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
[CrossRef] [PubMed]

Schuricht, G.

Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
[CrossRef]

Simon, J.

Sterr, U.

Stuhler, J.

Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
[CrossRef]

Teper, I.

Thomann, P.

Thomas, J.

T. Savard, K. OHara, J. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095–R1098 (1997).
[CrossRef]

Thompson, D. J.

D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
[CrossRef] [PubMed]

Thompson, J. K.

Tkach, R.

R. Tkach, A. Chraplyvy, “Regimes of feedback effects in 1.5um distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

Udem, T.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

Van Camp, M. A.

Vuletic, V.

Wang, L.

Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
[CrossRef]

Wang, Q.

Wang, S.

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Wineland, D. J.

D. J. Wineland, “Quantum information processing and quantum control with trapped atomic ions,” Phys. Scripta T137, 014007 (2009).
[CrossRef]

Yang, T.

Ye, J.

Zang, E.

Zanon-Willette, T.

Zhang, H.

Zhang, J.

Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
[CrossRef]

Zhao, Y.

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

C. Henry, R. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
[CrossRef]

J. Lightwave Technol.

R. Tkach, A. Chraplyvy, “Regimes of feedback effects in 1.5um distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010).
[CrossRef]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[CrossRef]

Opt. Lett.

B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987).
[CrossRef] [PubMed]

F. Kéfélian, H. Jiang, P. Lemonde, G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett. 34, 914–916 (2009).
[CrossRef] [PubMed]

J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, K. Hayasaka, “Compact, filtered diode laser system for precision spectroscopy,” Opt. Lett. 32, 572–574 (2007).
[CrossRef] [PubMed]

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10(−15),” Opt. Lett. 32, 641–643 (2007).
[CrossRef] [PubMed]

Y. Zhao, Y. Peng, T. Yang, Y. Li, Q. Wang, F. Meng, J. Cao, Z. Fang, T. Li, E. Zang, “External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback,” Opt. Lett. 36, 34–36 (2011).
[CrossRef] [PubMed]

K. Hayasaka, “Modulation-free optical locking of an external-cavity diode laser to a filter cavity,” Opt. Lett. 36, 2188–2190 (2011).
[CrossRef] [PubMed]

Q. Lin, M. A. Van Camp, H. Zhang, B. Jelenković, V. Vuletić, “Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth,” Opt. Lett. 37, 1989–1991 (2012).
[CrossRef] [PubMed]

Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, E. Zang, “High-finesse cavity external optical feedback DFB laser with hertz relative linewidth,” Opt. Lett. 37, 4729–4731 (2012).
[CrossRef] [PubMed]

Phys. Rev. A

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

T. Savard, K. OHara, J. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095–R1098 (1997).
[CrossRef]

Phys. Scripta

D. J. Wineland, “Quantum information processing and quantum control with trapped atomic ions,” Phys. Scripta T137, 014007 (2009).
[CrossRef]

Rev. Sci. Instrum.

D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the apparatus. The complete narrow linewidth system, consisting of the TOPTICA DL Pro supplemented by the long external cavity, is inside the dotted-line box, and the measurement chain is outside. The following abbreviations were used: PM for polarization-maintaining, PBS for polarizing beamsplitter, QWP for quarter-wave plate, PZT for piezoelectric transducer, and APD for avalanche photodiode.

Fig. 2
Fig. 2

Frequency noise spectral density without feedback (red circles), with intermediate feedback level (dark blue dashed), minimum frequency noise corresponding to highest stable feedback level (light blue solid), and amplitude noise baseline (black crosses) for 1m fiber (a) and 4m fiber (b). Feedback values for intermediate and minimum frequency noise are −44 dB and −40 dB for the 1 m fiber (a), and −43 dB and −39 dB for the 4 m fiber (b). The FP used for frequency analysis here has FWHM = 37 MHz, causing all but the amplitude noise traces to roll-off around 18 MHz. Noise peaks in panel (b) are at the FSR of the long external cavity.

Fig. 3
Fig. 3

Lorentzian linewidth as a function of feedback power ratio p from long external cavity using a 1 m fiber (blue) and a 4 m fiber (red). The linewidth narrowing is limited in both cases by multimode instability as p approaches the critical value of −39 dB. The top dash-dotted line represents the ECDL linewidth of 210 kHz without feedback from the long cavity, while the bottom dashed line represents the resolution limit due to amplitude noise. The FP used here has FWHM = 7.5 MHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ L = π S ν 0 ,
S ν 0 = S P 0 g 2 .

Metrics