Abstract

We compare InAlAs/GaAs and InGaAs/GaAs strained-layer superlattices (SLSs) as dislocation filter layers for 1.3-μm InAs/GaAs quantum-dot laser structures directly grown on Si substrates. InAlAs/GaAs SLSs are found to be more effective than InGaAs/GaAs SLSs in blocking the propagation of threading dislocations generated at the interface between the GaAs buffer layer and the Si substrate. Room-temperature lasing at ~1.27 μm with a threshold current density of 194 A/cm2 and output power of ~77 mW has been demonstrated for broad-area lasers grown on Si substrates using InAlAs/GaAs dislocation filter layers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  3. T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [CrossRef] [PubMed]
  4. X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Materials 3(1), 34–40 (2011).
    [CrossRef]
  5. Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
    [CrossRef]
  6. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [CrossRef] [PubMed]
  7. S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
    [CrossRef] [PubMed]
  8. H. H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
    [CrossRef] [PubMed]
  9. K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, Y. Arakawa, “Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
    [CrossRef] [PubMed]
  10. R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
    [CrossRef]
  11. K. Tanabe, K. Watanabe, Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep 2, 349 (2012).
    [CrossRef] [PubMed]
  12. D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [CrossRef]
  13. H. Liu, “III–V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates,” in Silicon-based Nanomaterials, H. Li, J. Wu, and Z. M. Wang, eds. (Springer New York, 2013), pp. 357–380.
  14. J. Wu, A. Lee, Q. Jiang, M. Tang, A. J. Seeds, H. Liu, “Electrically pumped continuous-wave 1.3-µm InAs/GaAs quantum dot lasers monolithically grown on Si substrates,” http://digital-library.theiet.org/content/journals/10.1049/iet-opt.2013.0093
  15. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [CrossRef]
  16. A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
    [CrossRef]
  17. A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
    [CrossRef] [PubMed]
  18. T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
    [CrossRef]
  19. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [CrossRef]
  20. A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
  21. H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
    [CrossRef]
  22. H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
    [CrossRef]
  23. H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
    [CrossRef]
  24. A. Georgakilas, A. Christou, “Effects of InGaAs/GaAs strained‐layer superlattices in optimized molecular‐beam‐epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
    [CrossRef]
  25. J. Yang, P. Bhattacharya, Z. Mi, “High-performance In 0.5 Ga 0.5 As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
    [CrossRef]
  26. R. Chen, H. Liu, H. Sun, “Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy,” J. Appl. Phys. 107(1), 013513 (2010).
    [CrossRef]
  27. P. Hirsch, “Nucleation and propagation of misfit dislocations in strained epitaxial layer systems,” Polycrystalline Semiconductors II 54, 470–482 (1991).
    [CrossRef]
  28. M. Yamaguchi, T. Nishioka, M. Sugo, “Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates,” Appl. Phys. Lett. 54(1), 24–26 (1989).
    [CrossRef]
  29. V. Ustinov, A. Zhukov, “GaAs-based long-wavelength lasers,” Semicond. Sci. Technol. 15(8), R41–R54 (2000).
    [CrossRef]
  30. C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
    [CrossRef]
  31. I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
    [CrossRef]
  32. D. Huffaker, G. Park, Z. Zou, O. Shchekin, D. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
    [CrossRef]
  33. O. Shchekin, D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
    [CrossRef]
  34. X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
    [CrossRef]

2014

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

2013

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[CrossRef]

2012

A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[CrossRef] [PubMed]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

K. Tanabe, K. Watanabe, Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep 2, 349 (2012).
[CrossRef] [PubMed]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[CrossRef] [PubMed]

S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[CrossRef] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

2011

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Materials 3(1), 34–40 (2011).
[CrossRef]

2010

2009

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

2007

H. H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
[CrossRef] [PubMed]

J. Yang, P. Bhattacharya, Z. Mi, “High-performance In 0.5 Ga 0.5 As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

2006

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

2005

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

2004

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

2003

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

2002

O. Shchekin, D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[CrossRef]

2000

V. Ustinov, A. Zhukov, “GaAs-based long-wavelength lasers,” Semicond. Sci. Technol. 15(8), R41–R54 (2000).
[CrossRef]

1998

D. Huffaker, G. Park, Z. Zou, O. Shchekin, D. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

1994

A. Georgakilas, A. Christou, “Effects of InGaAs/GaAs strained‐layer superlattices in optimized molecular‐beam‐epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
[CrossRef]

1991

P. Hirsch, “Nucleation and propagation of misfit dislocations in strained epitaxial layer systems,” Polycrystalline Semiconductors II 54, 470–482 (1991).
[CrossRef]

1989

M. Yamaguchi, T. Nishioka, M. Sugo, “Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates,” Appl. Phys. Lett. 54(1), 24–26 (1989).
[CrossRef]

Adams, A. R.

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

An, Q.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

Anopchenko, A.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

Arakawa, Y.

Badcock, T.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Badcock, T. J.

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

Beanland, R.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Bessette, J. T.

Bhattacharya, P.

J. Yang, P. Bhattacharya, Z. Mi, “High-performance In 0.5 Ga 0.5 As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

Bordel, D.

Bowers, J. E.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

H. H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
[CrossRef] [PubMed]

Cai, Y.

Camacho-Aguilera, R.

Camacho-Aguilera, R. E.

Chang, H. H.

Chang-Hasnain, C.

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Chen, R.

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

R. Chen, H. Liu, H. Sun, “Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy,” J. Appl. Phys. 107(1), 013513 (2010).
[CrossRef]

Chen, X.

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Materials 3(1), 34–40 (2011).
[CrossRef]

Childs, D.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

Christou, A.

A. Georgakilas, A. Christou, “Effects of InGaAs/GaAs strained‐layer superlattices in optimized molecular‐beam‐epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
[CrossRef]

Chuang, L. C.

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Cohen, O.

Daldosso, N.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

David, J.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Deppe, D.

O. Shchekin, D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[CrossRef]

D. Huffaker, G. Park, Z. Zou, O. Shchekin, D. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Fang, A. W.

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

Fathpour, S.

Frith, R.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Georgakilas, A.

A. Georgakilas, A. Christou, “Effects of InGaAs/GaAs strained‐layer superlattices in optimized molecular‐beam‐epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
[CrossRef]

Gossard, A. C.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Groom, K.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Groom, K. M.

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

Guider, R.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

Guimard, D.

Gutierrez, M.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Harrison, C.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Hirsch, P.

P. Hirsch, “Nucleation and propagation of misfit dislocations in strained epitaxial layer systems,” Polycrystalline Semiconductors II 54, 470–482 (1991).
[CrossRef]

Hogg, R.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

Hopkinson, M.

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Huffaker, D.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, D. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Iwamoto, S.

Jalali, B.

Jeong, S. H.

Jiang, Q.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[CrossRef]

A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[CrossRef] [PubMed]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Jin, C.

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

Jin, P.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

Jones, R.

Kimerling, L. C.

Ko, W. S.

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Kurahashi, T.

Lee, A.

Lee, A. D.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[CrossRef]

Li, C.

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Materials 3(1), 34–40 (2011).
[CrossRef]

Li, X.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

Liang, D.

D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Liu, A. W.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

Liu, A. Y.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Liu, H.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[CrossRef]

A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[CrossRef] [PubMed]

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

R. Chen, H. Liu, H. Sun, “Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy,” J. Appl. Phys. 107(1), 013513 (2010).
[CrossRef]

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Liu, H. Y.

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

Liu, J.

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

Lv, X.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

Marko, I. P.

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

Mi, Z.

J. Yang, P. Bhattacharya, Z. Mi, “High-performance In 0.5 Ga 0.5 As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

Michel, J.

Morito, K.

Mowbray, D.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Mowbray, D. J.

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

Navarro-Urrios, D.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

Ng, J.

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

Ng, K. W.

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Nishioka, T.

M. Yamaguchi, T. Nishioka, M. Sugo, “Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates,” Appl. Phys. Lett. 54(1), 24–26 (1989).
[CrossRef]

Norman, J.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Paniccia, M. J.

Park, G.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, D. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Park, H.

Patel, N.

Pavesi, L.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

Pitanti, A.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

Raday, O.

Robbins, D.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

Romagnoli, M.

Royce, R. J.

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

Sedgwick, F. G.

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Seeds, A.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[CrossRef] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

Seeds, A. J.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[CrossRef]

Sekiguchi, S.

Sellers, I.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Shchekin, O.

O. Shchekin, D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[CrossRef]

D. Huffaker, G. Park, Z. Zou, O. Shchekin, D. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Skolnick, M.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Skolnick, M. S.

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

Snyder, A.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Spano, R.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

Steer, M.

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Sugo, M.

M. Yamaguchi, T. Nishioka, M. Sugo, “Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates,” Appl. Phys. Lett. 54(1), 24–26 (1989).
[CrossRef]

Sun, H.

R. Chen, H. Liu, H. Sun, “Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy,” J. Appl. Phys. 107(1), 013513 (2010).
[CrossRef]

Sun, X.

Sweeney, S. J.

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

Sysak, M. N.

Tanabe, K.

Tanaka, S.

Tanaka, Y.

Tang, M.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[CrossRef]

A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[CrossRef] [PubMed]

Tran, T. D.

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Tsang, H. K.

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Materials 3(1), 34–40 (2011).
[CrossRef]

Tutu, F.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Ustinov, V.

V. Ustinov, A. Zhukov, “GaAs-based long-wavelength lasers,” Semicond. Sci. Technol. 15(8), R41–R54 (2000).
[CrossRef]

Wang, T.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Wang, Z.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

Watanabe, K.

K. Tanabe, K. Watanabe, Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep 2, 349 (2012).
[CrossRef] [PubMed]

Wei, H.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

Wu, J.

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, T. Nishioka, M. Sugo, “Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates,” Appl. Phys. Lett. 54(1), 24–26 (1989).
[CrossRef]

Yang, J.

J. Yang, P. Bhattacharya, Z. Mi, “High-performance In 0.5 Ga 0.5 As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

Yuan, Z.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

Zhang, Y.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[CrossRef]

Zhukov, A.

V. Ustinov, A. Zhukov, “GaAs-based long-wavelength lasers,” Semicond. Sci. Technol. 15(8), R41–R54 (2000).
[CrossRef]

Zou, Z.

D. Huffaker, G. Park, Z. Zou, O. Shchekin, D. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

Appl. Phys. Lett.

T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett. 100(5), 052113 (2012).
[CrossRef]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[CrossRef]

M. Yamaguchi, T. Nishioka, M. Sugo, “Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates,” Appl. Phys. Lett. 54(1), 24–26 (1989).
[CrossRef]

D. Huffaker, G. Park, Z. Zou, O. Shchekin, D. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[CrossRef]

O. Shchekin, D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[CrossRef]

IEEE J. Quantum Electron.

C. Jin, T. J. Badcock, H. Liu, K. M. Groom, R. J. Royce, D. J. Mowbray, M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3-m p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron. 42(12), 1259–1265 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. P. Marko, A. R. Adams, S. J. Sweeney, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, K. M. Groom, “Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1041–1047 (2005).
[CrossRef]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si, ge, and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17(6), 1139–1141 (2005).
[CrossRef]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, Z. Wang, “Improved continuous-wave performance of two-section quantum-dot superluminescent diodes by using epi-down mounting process,” IEEE Photon. Technol. Lett. 24(14), 1188–1190 (2012).
[CrossRef]

IEEE Trans. Electron. Dev.

J. Yang, P. Bhattacharya, Z. Mi, “High-performance In 0.5 Ga 0.5 As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

J. Appl. Phys.

R. Chen, H. Liu, H. Sun, “Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy,” J. Appl. Phys. 107(1), 013513 (2010).
[CrossRef]

A. Georgakilas, A. Christou, “Effects of InGaAs/GaAs strained‐layer superlattices in optimized molecular‐beam‐epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
[CrossRef]

H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. Sellers, D. Mowbray, M. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

J. Lightwave Technol.

J. Vac. Sci. Technol. B

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

Nat. Photonics

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

NPG Asia Materials

X. Chen, C. Li, H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Materials 3(1), 34–40 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Polycrystalline Semiconductors II

P. Hirsch, “Nucleation and propagation of misfit dislocations in strained epitaxial layer systems,” Polycrystalline Semiconductors II 54, 470–482 (1991).
[CrossRef]

Proc. IEEE

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97(7), 1250–1268 (2009).
[CrossRef]

Sci Rep

K. Tanabe, K. Watanabe, Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep 2, 349 (2012).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

V. Ustinov, A. Zhukov, “GaAs-based long-wavelength lasers,” Semicond. Sci. Technol. 15(8), R41–R54 (2000).
[CrossRef]

Other

H. Liu, “III–V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates,” in Silicon-based Nanomaterials, H. Li, J. Wu, and Z. M. Wang, eds. (Springer New York, 2013), pp. 357–380.

J. Wu, A. Lee, Q. Jiang, M. Tang, A. J. Seeds, H. Liu, “Electrically pumped continuous-wave 1.3-µm InAs/GaAs quantum dot lasers monolithically grown on Si substrates,” http://digital-library.theiet.org/content/journals/10.1049/iet-opt.2013.0093

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) AFM image (1 × 1 μm2) of InAs/GaAs QDs grown on a Si substrate. (b) Cross-sectional TEM image of an uncapped InAs QD. The scale bar is 10 nm. (c) Cross-sectional TEM bright field image of five layers of DWELL structure grown on Si substrate. The scale bar is 100 nm.

Fig. 2
Fig. 2

Cross-sectional TEM dark field multi-beam images showing defect reduction induced by (a) InGaAs/GaAs SLS and (b) InAlAs/GaAs SLS. The scale bars are 1 µm. (c) Reduction of dislocation induced by the SLS layers measured at different position. The defect density is measured in ~20 microns area. After the third SLS, EPD technique is also used to estimate the defect density.

Fig. 3
Fig. 3

(a) Room-temperature PL spectra and (b) integrated PL intensities as a function of temperature for the DWELL structure grown on Si substrates with InGaAs/GaAs and InAlAs/GaAs SLSs.

Fig. 4
Fig. 4

Schematic of an InAs/GaAs QD laser grown on a Si substrate.

Fig. 5
Fig. 5

(a) Single facet output power against current density for 3mm-long InAs/GaAs QD laser grown on Si with InAlAs DFLs under pulsed mode (1% duty-cycle and 1µs pulse-width) at room temperature. The inset shows the threshold kink at 194A/cm2. (b) Lasing spectrum of Si based InAs/GaAs QD laser with InAlAs DFLs at an injection current density of 194A/cm2. The inset shows the emission spectra for different drive current densities below and above threshold.

Fig. 6
Fig. 6

Light output power against current density for Si-based InAs/GaAs QD laser with InAlAs DFLs at various substrate temperatures under pulsed mode.

Metrics