Abstract

Surface plasmon polaritons (SPP) waves have been shown to significantly affect the near-field photophysical phenomenon. In particular, strong Coulombic interactions can enhance nearby non-linear optics and energy transfer process, while SPP waves also affect other photophysical processes like quenching observed in fluorescent and excitonic systems. Here, using different plasmonic substrates, we show the effect of plasmon-enhancement on quenching, phonon-assisted non-radiative decay, weak Purcell effect or electromagnetic field enhancement, and energy transfer rates of upconverting doped-lanthanide nanoparticles. While the resonant plasmons enhance the local electromagnetic field and the rate of energy transfer leading to enhanced upconversion photoluminescence of infrared radiation to visible light, it can also increase the quenching and non-radiative decay rates of photoexcited electron-hole pairs leading to losses and lower efficiency. These results can guide the design of optimized substrate geometry for using surface plasmons to modulate the photophysics in other applications too.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
    [CrossRef]
  2. B. M. van der Ende, L. Aarts, A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
    [CrossRef] [PubMed]
  3. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
    [CrossRef] [PubMed]
  4. F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [CrossRef] [PubMed]
  5. Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
    [CrossRef] [PubMed]
  6. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
    [CrossRef] [PubMed]
  7. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  8. M. Haase, H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [CrossRef] [PubMed]
  9. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
    [CrossRef] [PubMed]
  10. A. Polman, F. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
    [CrossRef]
  11. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
    [CrossRef] [PubMed]
  12. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
    [CrossRef] [PubMed]
  13. J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
    [CrossRef] [PubMed]
  14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  15. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
    [CrossRef] [PubMed]
  16. C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009).
    [CrossRef]
  17. A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008).
    [CrossRef] [PubMed]
  18. T. Lee, R. P. Trivedi, I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
    [CrossRef] [PubMed]
  19. Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
    [CrossRef] [PubMed]
  20. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
    [CrossRef]
  21. B. S. Cao, Y. Y. He, L. Zhang, B. Dong, “Upconversion properties of Er3+-Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration,” J. Lumin. 135, 128–132 (2013).
    [CrossRef]
  22. M. G. Nikolić, D. J. Jovanović, M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt. 52(8), 1716–1724 (2013).
    [CrossRef] [PubMed]
  23. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [CrossRef] [PubMed]
  24. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  25. P. Nagpal, N. C. Lindquist, S.-H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
    [CrossRef] [PubMed]
  26. N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [CrossRef] [PubMed]
  27. M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
    [CrossRef]
  28. J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
    [CrossRef] [PubMed]
  29. Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
    [CrossRef]

2014 (2)

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[CrossRef] [PubMed]

2013 (5)

B. S. Cao, Y. Y. He, L. Zhang, B. Dong, “Upconversion properties of Er3+-Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration,” J. Lumin. 135, 128–132 (2013).
[CrossRef]

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[CrossRef] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

M. G. Nikolić, D. J. Jovanović, M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt. 52(8), 1716–1724 (2013).
[CrossRef] [PubMed]

2011 (3)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

M. Haase, H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

2010 (5)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

T. Lee, R. P. Trivedi, I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

2009 (5)

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

P. Nagpal, N. C. Lindquist, S.-H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[CrossRef] [PubMed]

C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008).
[CrossRef] [PubMed]

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

2007 (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef] [PubMed]

2005 (2)

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

2004 (2)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

A. Polman, F. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Aebischer, A.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

Aichele, T.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Anderson, R.

C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009).
[CrossRef]

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Benson, O.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Bergey, E. J.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Berry, M. T.

C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009).
[CrossRef]

Biner, D.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cao, B. S.

B. S. Cao, Y. Y. He, L. Zhang, B. Dong, “Upconversion properties of Er3+-Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration,” J. Lumin. 135, 128–132 (2013).
[CrossRef]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Chen, B.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Chen, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Chi, D.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

Dawes, J. M.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

Deng, R.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Dong, B.

B. S. Cao, Y. Y. He, L. Zhang, B. Dong, “Upconversion properties of Er3+-Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration,” J. Lumin. 135, 128–132 (2013).
[CrossRef]

Dramicanin, M. D.

Durach, M.

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gerner, P.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Goldys, E. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

Grimm, J.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

Gudel, H. U.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

Haase, M.

M. Haase, H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Han, Y.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

He, Y. Y.

B. S. Cao, Y. Y. He, L. Zhang, B. Dong, “Upconversion properties of Er3+-Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration,” J. Lumin. 135, 128–132 (2013).
[CrossRef]

Heer, S.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Hor, T. S. A.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

Jin, D.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

Jovanovic, D. J.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Klimov, V. I.

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Kramer, K. W.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

Kumar, R.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Lee, T.

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, Y.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Lin, C.

C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Liu, G.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

Liu, G.-Y.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[CrossRef] [PubMed]

Liu, X.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

Liu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

Lu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Lu, Z.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

Luo, Y.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

MacDonald, M. A.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

May, P. S.

C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009).
[CrossRef]

McRae, C.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

Meijerink, A.

B. M. van der Ende, L. Aarts, A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

Mundoor, H.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[CrossRef] [PubMed]

Nagpal, P.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Nann, T.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Nikolic, M. G.

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Nyk, M.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Oh, S.-H.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Ohulchanskyy, T. Y.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Piper, J. A.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

Polman, A.

Prasad, P. N.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Reinhard, C.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

Ren, X.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Ribot, J. C.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[CrossRef] [PubMed]

Richards, B. S.

A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Schäfer, H.

M. Haase, H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Schartner, E. P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

Schietinger, S.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Shalav, A.

A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

Singh, V.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[CrossRef] [PubMed]

Smalyukh, I. I.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[CrossRef] [PubMed]

T. Lee, R. P. Trivedi, I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

Smith, S.

C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009).
[CrossRef]

Stockman, M. I.

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Sun, L.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Sun, L.-D.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[CrossRef] [PubMed]

Sun, Q. C.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[CrossRef] [PubMed]

Suyver, J. F.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Trivedi, R. P.

Trupke, T.

A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

van Veggel, F.

Wang, F.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

Wang, H.-Q.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Wang, J.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Wang, X.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Wang, Y.-F.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xi, P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

Xiao, J.-W.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[CrossRef] [PubMed]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Yan, C.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Yan, C.-H.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[CrossRef] [PubMed]

Yin, Y.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

Yuan, J.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Zhang, J.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

B. S. Cao, Y. Y. He, L. Zhang, B. Dong, “Upconversion properties of Er3+-Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration,” J. Lumin. 135, 128–132 (2013).
[CrossRef]

Zhang, P.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

Zhang, X.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Zhao, H.

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Zhao, J.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

Zhou, J.-C.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[CrossRef] [PubMed]

Zhu, H.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

ACS Nano (1)

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

M. Haase, H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[CrossRef]

Chem. Mater. (1)

C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009).
[CrossRef]

Chem. Rev. (2)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

J. Lumin. (1)

B. S. Cao, Y. Y. He, L. Zhang, B. Dong, “Upconversion properties of Er3+-Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration,” J. Lumin. 135, 128–132 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009).
[CrossRef]

Nano Lett. (4)

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[CrossRef] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[CrossRef] [PubMed]

Nanoscale (1)

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[CrossRef] [PubMed]

Nat. Mater. (3)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[CrossRef] [PubMed]

Nature (2)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

New J. Phys. (1)

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

B. M. van der Ende, L. Aarts, A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef] [PubMed]

Science (2)

P. Nagpal, N. C. Lindquist, S.-H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[CrossRef] [PubMed]

A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Energy-level diagram, upconversion excitation, and visible emission schemes for the Yb3+-sensitized Er3+ system [7, 9]. Dashed, solid, curly, and dotted arrows indicate upconversion energy transfer, radiative, multiphonon, and cross-relaxation processes, respectively. High efficiency of UPL can be achieved by improving the absorption in Yb3+ dopants and enhancing the energy transfer between Er3+ and Yb3+ (dashed lines). Yb3+ mainly absorbs 980 nm photons. (b) Left: the size distribution obtained from several TEM images. Right: a representative transmission electron micrograph (TEM) image of 29 nm β-NaYF4:17%Yb3+/3%Er3+ nanoparticles. (c) Upconversion emission spectra of 29 nm β-NaYF4:17%Yb3+/3%Er3+ nanoparticles on linear grating (red curve), bullseye (blue curve), pyramidal grating (green curve), glass (cyan curve), and gold (magenta curve) substrates. (d) Schematic of the energy transfer, upconversion, and quenching processes on the top and bottom of the gold substrate. The doped-lanthanide UCNPs provide a good platform to study all of these photophysical processes.

Fig. 2
Fig. 2

Pump power dependence of upconversion emission intensities of 29 nm NaYF4:Yb3+/Er3+ particles. The slope is ~2 which indicates two-photon process.

Fig. 3
Fig. 3

Time-resolved upconversion photoluminescence (UPL) spectroscopy for (a) red and (b) green emission, respectively. The single-exponential UPL decay indicates small non-radiative relaxation from respective energy levels, and the decay times indicates respective rates of radiative decay.

Fig. 4
Fig. 4

Near-infrared extinction spectrum for (a) pyramid, (b) bullseye, and (c) linear grating substrates. The plasmon absorption peak shifts to lower wavelength with decreasing periodicity (as shown for bullseye in Fig. 4(b)), indicating shift of respective resonant plasmon energies.

Fig. 5
Fig. 5

(a,b) 2D confocal images for the green and red emission of 29 nm β-NaYF4:Yb3+/Er3+ particles on the linear grating substrate, respectively. (c,d) 3D confocal scan images of the green and red emission of UCNPs on the linear grating substrate, respectively. (e,f) Spatially resolved line intensity for the green and red upconversion emission on the linear grating substrate, using the 3D image.

Fig. 6
Fig. 6

Optical images of (a) linear grating, (b) bullseye, and (c) pyramid substrates. Atomic force microscopy (AFM) images of (d) linear grating, (e) bullseye, and (f) pyramid substrates. (g) AFM image of the pyramid substrate with 29 nm β-NaYF4:Yb3+/Er3+ particles. White arrows point out a few nanoparticles on the pyramid substrate as examples.

Fig. 7
Fig. 7

(a,b) 2D confocal images for the green and red emission of 29 nm β-NaYF4:Yb3+/Er3+ particles on the bullseye substrate, respectively. (c,d) 3D confocal scan images of the green and red emission of UCNPs on the bullseye substrate, respectively. (e,f) Spatially resolved line intensity for the green and red upconversion emission on the bullseye substrate, using the 3D image.

Fig. 8
Fig. 8

(a,b) 2D confocal images for the green and red emission of 29 nm β-NaYF4:Yb3+/Er3+ particles on the pyramidal grating substrate, respectively. (c,d) 3D confocal scan images of the green and red emission of UCNPs on the pyramidal grating substrate, respectively. (e,f) Spatially resolved line intensity for the green and red upconversion emission on the pyramidal grating substrate, using the 3D image.

Fig. 9
Fig. 9

Near-infrared upconversion emission spectra of 29 nm β-NaYF4:17%Yb3+/3%Er3+ nanoparticles on the pyramid substrate.

Tables (1)

Tables Icon

Table 1 Summary of Electromagnetic (EM) Enhancement, Energy Transfer Enhancement, Nonradiative Decay, and Quenching with Different Plasmon-Enhancementsa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

0 = W 21 N Er , 2 k 2 N Er , 1 N Yb , 1 ,
0 = k 1 N Er , 0 N Yb , 1 k 3 N Er , 2 N Yb , 1 W 21 N Er , 2 ,
0 = k 2 N Er , 1 N Yb , 1 W 4 N Er , 4 ,
0 = k 3 N Er , 2 N Yb , 1 W 5 N Er , 5 ,
0 = f Yb N Yb , 0 k 1 N Er , 0 N Yb , 1 k 2 N Er , 1 N Yb , 1 k 3 N Er , 2 N Yb , 1 .
0= k 3 N Er,2 N Yb,1 W 5 N Er,5 k q N Er,5 .

Metrics