Abstract

We demonstrate pulsed polarization-entangled photons generated from a periodically poled KTiOPO4 (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied, the intrinsic spectral purity of the photons is much higher than in the previous scheme at around 800 nm wavelength. The combination of a Sagnac interferometer and the GVM-PPKTP crystal makes our entangled source compact, stable, highly entangled, spectrally pure and ultra-bright. The photons were detected by two superconducting nanowire single photon detectors (SNSPDs) with detection efficiencies of 70% and 68% at dark counts of less than 1 kcps. We achieved fidelities of 0.981 ± 0.0002 for |ψ〉 and 0.980 ± 0.001 for |ψ+〉 respectively. This GVM-PPKTP-Sagnac scheme is directly applicable to quantum communication experiments at telecom wavelength, especially in free space.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
    [CrossRef] [PubMed]
  2. N. Gisin, S. Pironio, N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
    [CrossRef] [PubMed]
  3. J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
    [CrossRef] [PubMed]
  4. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]
  5. K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
    [CrossRef]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  7. B.-S. Shi, A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
    [CrossRef]
  8. J. Altepeter, E. Jeffrey, P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13, 8951–8959 (2005).
    [CrossRef] [PubMed]
  9. Y. Li, H. Jing, M.-S. Zhan, “Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state,” J. Phys. B: At. Mol. Opt. Phys. 39, 2107–2113 (2006).
    [CrossRef]
  10. M. Hentschel, H. Hübel, A. Poppe, A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
    [CrossRef]
  11. R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
    [CrossRef]
  12. F. Steinlechner, S. Ramelow, M. Jofre, M. Gilaberte, T. Jennewein, J. P. Torres, M. W. Mitchell, V. Pruneri, “Phase-stable source of polarization-entangled photons in a linear double-pass configuration,” Opt. Express 21, 11943–11951 (2013).
    [CrossRef] [PubMed]
  13. T. Kim, M. Fiorentino, F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [CrossRef]
  14. F. Wong, J. Shapiro, T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
    [CrossRef]
  15. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [CrossRef] [PubMed]
  16. O. Kuzucu, F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
    [CrossRef]
  17. A. Predojević, S. Grabher, G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
    [CrossRef]
  18. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
    [CrossRef]
  19. R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
    [CrossRef]
  20. L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
    [CrossRef]
  21. S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
    [CrossRef] [PubMed]
  22. M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
    [CrossRef] [PubMed]
  23. Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
    [CrossRef] [PubMed]
  24. W. P. Grice, I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
    [CrossRef]
  25. T. E. Keller, M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
    [CrossRef]
  26. F. König, F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
    [CrossRef]
  27. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [CrossRef] [PubMed]
  28. R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
    [CrossRef]
  29. R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
    [CrossRef] [PubMed]
  30. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
    [CrossRef]
  31. A. Eckstein, A. Christ, P. J. Mosley, C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [CrossRef] [PubMed]
  32. T. Lutz, P. Kolenderski, T. Jennewein, “Toward a downconversion source of positively spectrally correlated and decorrelated telecom photon pairs,” Opt. Lett. 38, 697–699 (2013).
    [CrossRef] [PubMed]
  33. T. Lutz, P. Kolenderski, T. Jennewein, “Demonstration of spectral correlation control in a source of polarization entangled photon pairs at telecom wavelength,” arXiv:1309.4040 (2013).
  34. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
    [CrossRef]
  35. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
    [CrossRef] [PubMed]
  36. R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
    [CrossRef]
  37. N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” arXiv:1403.6740 (2014).
  38. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
    [CrossRef] [PubMed]
  39. K. Fradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [CrossRef]
  40. A. Scherer, B. C. Sanders, W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
    [CrossRef] [PubMed]
  41. Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
    [CrossRef] [PubMed]
  42. X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
    [CrossRef]
  43. J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [CrossRef]
  44. http://demonstrations.wolfram.com/sagnacinterferometer/ .
  45. S. Miki, T. Yamashita, T. Hirotaka, W. Zhen, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with Gifford-Mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
    [CrossRef] [PubMed]
  46. T. Yamashita, S. Miki, H. Terai, Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
    [CrossRef] [PubMed]
  47. S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Superconduct. 17, 285–288 (2007).
    [CrossRef]
  48. R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).
  49. D. R. Hamel, “Realization of novel entangled photon sources using periodically poled materials,” Master’s thesis, University of Waterloo (2010).
  50. J. F. Clauser, A. Shimony, “Bell’s theorem : experimental tests and implications,” Rep. Prog. Phys. 41, 1881–1927 (1978).
    [CrossRef]
  51. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
    [CrossRef]
  52. D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [CrossRef]
  53. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 2315–2323 (1994).
    [CrossRef]
  54. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  55. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, M. Tsuchiya, “Widely repetition-tunable 200 fs pulse source using a Mach-Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 33, 1192–1194 (2008).
    [CrossRef] [PubMed]
  56. J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [CrossRef]

2013 (11)

R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
[CrossRef]

L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
[CrossRef]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

T. Lutz, P. Kolenderski, T. Jennewein, “Toward a downconversion source of positively spectrally correlated and decorrelated telecom photon pairs,” Opt. Lett. 38, 697–699 (2013).
[CrossRef] [PubMed]

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[CrossRef] [PubMed]

S. Miki, T. Yamashita, T. Hirotaka, W. Zhen, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with Gifford-Mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[CrossRef] [PubMed]

F. Steinlechner, S. Ramelow, M. Jofre, M. Gilaberte, T. Jennewein, J. P. Torres, M. W. Mitchell, V. Pruneri, “Phase-stable source of polarization-entangled photons in a linear double-pass configuration,” Opt. Express 21, 11943–11951 (2013).
[CrossRef] [PubMed]

T. Yamashita, S. Miki, H. Terai, Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[CrossRef] [PubMed]

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

2012 (4)

A. Predojević, S. Grabher, G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
[CrossRef]

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

2011 (6)

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[CrossRef]

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

A. Eckstein, A. Christ, P. J. Mosley, C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef] [PubMed]

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
[CrossRef] [PubMed]

A. Scherer, B. C. Sanders, W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
[CrossRef] [PubMed]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[CrossRef] [PubMed]

2010 (2)

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[CrossRef]

N. Gisin, S. Pironio, N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[CrossRef] [PubMed]

2009 (3)

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

M. Hentschel, H. Hübel, A. Poppe, A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
[CrossRef]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
[CrossRef]

2008 (3)

I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, M. Tsuchiya, “Widely repetition-tunable 200 fs pulse source using a Mach-Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 33, 1192–1194 (2008).
[CrossRef] [PubMed]

O. Kuzucu, F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

2007 (4)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Superconduct. 17, 285–288 (2007).
[CrossRef]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[CrossRef] [PubMed]

2006 (3)

T. Kim, M. Fiorentino, F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

F. Wong, J. Shapiro, T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[CrossRef]

Y. Li, H. Jing, M.-S. Zhan, “Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state,” J. Phys. B: At. Mol. Opt. Phys. 39, 2107–2113 (2006).
[CrossRef]

2005 (2)

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

J. Altepeter, E. Jeffrey, P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13, 8951–8959 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

F. König, F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
[CrossRef]

B.-S. Shi, A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
[CrossRef]

2001 (1)

D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

1999 (1)

K. Fradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

1997 (2)

W. P. Grice, I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

T. E. Keller, M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

1994 (1)

R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 2315–2323 (1994).
[CrossRef]

1987 (1)

1978 (1)

J. F. Clauser, A. Shimony, “Bell’s theorem : experimental tests and implications,” Rep. Prog. Phys. 41, 1881–1927 (1978).
[CrossRef]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Altepeter, J.

Arie, A.

K. Fradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Baek, B.

Bao, X.-H.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Benichi, H.

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[CrossRef] [PubMed]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

Bennink, R. S.

Beyer, J.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[CrossRef] [PubMed]

Böhm, H.

Bonsma, M.

L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
[CrossRef]

Bruno, N.

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” arXiv:1403.6740 (2014).

Byer, R. L.

Cai, X.-D.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Calkins, B.

Cao, Y.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Chao-Yang, L.

J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Chen, Y.-A.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef] [PubMed]

Clauser, J. F.

J. F. Clauser, A. Shimony, “Bell’s theorem : experimental tests and implications,” Rep. Prog. Phys. 41, 1881–1927 (1978).
[CrossRef]

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Cohen, O.

Colbeck, R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[CrossRef]

Donohue, J. M.

L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
[CrossRef]

Dorenbos, S.

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Eckardt, R. C.

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef] [PubMed]

Edamatsu, K.

R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
[CrossRef]

K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
[CrossRef]

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[CrossRef]

Fan, T. Y.

Fan, Y. X.

Fedrizzi, A.

Feigelson, R. S.

Fiorentino, M.

T. Kim, M. Fiorentino, F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

Fisher, K.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[CrossRef]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Fujiwara, M.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Superconduct. 17, 285–288 (2007).
[CrossRef]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Gerrits, T.

Gilaberte, M.

Gisin, N.

N. Gisin, S. Pironio, N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[CrossRef] [PubMed]

Giustina, M.

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[CrossRef] [PubMed]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

Glancy, S.

Grabher, S.

Grice, W. P.

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[CrossRef] [PubMed]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[CrossRef]

W. P. Grice, I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Gröblacher, S.

Guerreiro, T.

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” arXiv:1403.6740 (2014).

Guo, G.-C.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
[CrossRef] [PubMed]

Hadfield, R. H.

Hamel, D. R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[CrossRef]

D. R. Hamel, “Realization of novel entangled photon sources using periodically poled materials,” Master’s thesis, University of Waterloo (2010).

Hentschel, M.

Herbst, T.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[CrossRef] [PubMed]

Hideo, K.

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

Hirotaka, T.

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Hosako, I.

Hu, B. Q.

Huang, C. E.

Huang, Y.-F.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
[CrossRef] [PubMed]

Huang, Y.-M.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Hübel, H.

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[CrossRef]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Jeffrey, E.

Jennewein, T.

Jia, J.-J.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Jiang, Y.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Jin, R.-B.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[CrossRef] [PubMed]

R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
[CrossRef]

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Jing, H.

Y. Li, H. Jing, M.-S. Zhan, “Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state,” J. Phys. B: At. Mol. Opt. Phys. 39, 2107–2113 (2006).
[CrossRef]

Jofre, M.

Jozsa, R.

R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 2315–2323 (1994).
[CrossRef]

Kaneda, F.

R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
[CrossRef]

Kawanishi, T.

Keiichi, E.

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

Keller, T. E.

T. E. Keller, M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[CrossRef]

Kim, T.

F. Wong, J. Shapiro, T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[CrossRef]

T. Kim, M. Fiorentino, F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

Klapwijk, T.

Knill, E.

Kofler, J.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Kolenderski, P.

T. Lutz, P. Kolenderski, T. Jennewein, “Toward a downconversion source of positively spectrally correlated and decorrelated telecom photon pairs,” Opt. Lett. 38, 697–699 (2013).
[CrossRef] [PubMed]

T. Lutz, P. Kolenderski, T. Jennewein, “Demonstration of spectral correlation control in a source of polarization entangled photon pairs at telecom wavelength,” arXiv:1309.4040 (2013).

König, F.

F. König, F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
[CrossRef]

Kosaka, H.

R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
[CrossRef]

Kurtsiefer, C.

Kuzucu, O.

O. Kuzucu, F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[CrossRef]

Kwiat, P.

Kwiat, P. G.

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Li, C.-F.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
[CrossRef] [PubMed]

Li, L.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
[CrossRef] [PubMed]

Li, Y.

Y. Li, H. Jing, M.-S. Zhan, “Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state,” J. Phys. B: At. Mol. Opt. Phys. 39, 2107–2113 (2006).
[CrossRef]

Li, Y.-H.

Liang, H.

Liao, S.-K.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Lita, A.

Liu, B.-H.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
[CrossRef] [PubMed]

Liu, C.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Lorünser, T.

Lu, C.-Y.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

Lu, H.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Lundeen, J. S.

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Lutz, T.

T. Lutz, P. Kolenderski, T. Jennewein, “Toward a downconversion source of positively spectrally correlated and decorrelated telecom photon pairs,” Opt. Lett. 38, 697–699 (2013).
[CrossRef] [PubMed]

T. Lutz, P. Kolenderski, T. Jennewein, “Demonstration of spectral correlation control in a source of polarization entangled photon pairs at telecom wavelength,” arXiv:1309.4040 (2013).

Ma, X.

Mahou, P.

Marek, Zukowski

J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Martin, A.

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” arXiv:1403.6740 (2014).

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Maurhardt, O.

Mech, A.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[CrossRef] [PubMed]

Miki, S.

T. Yamashita, S. Miki, H. Terai, Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[CrossRef] [PubMed]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

S. Miki, T. Yamashita, T. Hirotaka, W. Zhen, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with Gifford-Mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Superconduct. 17, 285–288 (2007).
[CrossRef]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Mirin, R. P.

Mitchell, M. W.

Mitsumori, Y.

R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
[CrossRef]

Morohashi, I.

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Nam, S. W.

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nespoli, M.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

Nobuyuki, M.

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

Noel, C.

L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
[CrossRef]

Pan, G.-S.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Pan, J.-W.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Peev, M.

Peng, C.-Z.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Peng, L.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
[CrossRef] [PubMed]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Pironio, S.

N. Gisin, S. Pironio, N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[CrossRef] [PubMed]

Poppe, A.

Predojevic, A.

Prevedel, R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[CrossRef]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

Pruneri, V.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Ramelow, S.

Ren, J.-G.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Resch, K. J.

L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
[CrossRef]

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[CrossRef]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Rubin, M. H.

T. E. Keller, M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[CrossRef]

Ryosuke, S.

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

Sakamoto, T.

Sanders, B. C.

Sangouard, N.

N. Gisin, S. Pironio, N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[CrossRef] [PubMed]

Sanguinetti, B.

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” arXiv:1403.6740 (2014).

Sasaki, M.

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[CrossRef] [PubMed]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Superconduct. 17, 285–288 (2007).
[CrossRef]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Schaake, J.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[CrossRef]

Scheidl, T.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

Scherer, A.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shapiro, J.

F. Wong, J. Shapiro, T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[CrossRef]

Shi, B.-S.

B.-S. Shi, A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
[CrossRef]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shimizu, R.

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[CrossRef] [PubMed]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
[CrossRef]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Shimony, A.

J. F. Clauser, A. Shimony, “Bell’s theorem : experimental tests and implications,” Rep. Prog. Phys. 41, 1881–1927 (1978).
[CrossRef]

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Silberhorn, C.

A. Eckstein, A. Christ, P. J. Mosley, C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Smith, B. J.

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Sotobayashi, H.

Steinlechner, F.

Stevens, M. J.

Suda, M.

Terai, H.

T. Yamashita, S. Miki, H. Terai, Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[CrossRef] [PubMed]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Thew, R. T.

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” arXiv:1403.6740 (2014).

Tiefenbacher, F.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

Tittel, W.

Tomita, A.

B.-S. Shi, A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
[CrossRef]

Torres, J. P.

Tsuchiya, M.

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Ursin, R.

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[CrossRef] [PubMed]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

Vermeyden, L.

L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
[CrossRef]

Wakui, K.

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[CrossRef] [PubMed]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Walmsley, I. A.

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

W. P. Grice, I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Wang, J.-Y.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Wang, T.-X.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

Wang, Z.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

T. Yamashita, S. Miki, H. Terai, Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[CrossRef] [PubMed]

S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Superconduct. 17, 285–288 (2007).
[CrossRef]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Weihs, G.

Weinfurter, H.

J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Wieczorek, W.

Wittmann, B.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

Wolfe, E.

L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
[CrossRef]

Wong, F.

F. Wong, J. Shapiro, T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[CrossRef]

Wong, F. N. C.

O. Kuzucu, F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[CrossRef]

T. Kim, M. Fiorentino, F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

F. König, F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Wu, Y.-P.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Xu, P.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

Yamashita, T.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

T. Yamashita, S. Miki, H. Terai, Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[CrossRef] [PubMed]

S. Miki, T. Yamashita, T. Hirotaka, W. Zhen, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with Gifford-Mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

Yang, T.

Yao, X.-C.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

Yasuyoshi, M.

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

Yin, H.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Yin, J.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Yong, H.-L.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Zeilinger, A.

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[CrossRef] [PubMed]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

M. Hentschel, H. Hübel, A. Poppe, A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
[CrossRef]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[CrossRef] [PubMed]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Zhan, M.-S.

Y. Li, H. Jing, M.-S. Zhan, “Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state,” J. Phys. B: At. Mol. Opt. Phys. 39, 2107–2113 (2006).
[CrossRef]

Zhang, J.

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

Zhen, W.

Zhou, F.

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Zijlstra, T.

Zwiller, V.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Fradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

F. König, F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
[CrossRef]

IEEE Trans. Appl. Superconduct. (1)

S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Superconduct. 17, 285–288 (2007).
[CrossRef]

J. Mod. Opt. (1)

R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 2315–2323 (1994).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

Y. Li, H. Jing, M.-S. Zhan, “Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state,” J. Phys. B: At. Mol. Opt. Phys. 39, 2107–2113 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
[CrossRef]

Laser Phys. (1)

F. Wong, J. Shapiro, T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006).
[CrossRef]

Nat. Commun. (1)

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, G.-C. Guo, “Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state,” Nat. Commun. 2, 546 (2011).
[CrossRef] [PubMed]

Nat. Photon. (1)

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photon. 6, 225–228 (2012).
[CrossRef]

Nat. Phys. (2)

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[CrossRef]

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[CrossRef]

Nature (2)

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497, 227–230 (2013).
[CrossRef] [PubMed]

Opt. Express (14)

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

J. Altepeter, E. Jeffrey, P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13, 8951–8959 (2005).
[CrossRef] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[CrossRef] [PubMed]

M. Hentschel, H. Hübel, A. Poppe, A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
[CrossRef]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
[CrossRef]

A. Scherer, B. C. Sanders, W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
[CrossRef] [PubMed]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[CrossRef] [PubMed]

A. Predojević, S. Grabher, G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
[CrossRef]

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[CrossRef] [PubMed]

S. Miki, T. Yamashita, T. Hirotaka, W. Zhen, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with Gifford-Mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef] [PubMed]

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[CrossRef] [PubMed]

F. Steinlechner, S. Ramelow, M. Jofre, M. Gilaberte, T. Jennewein, J. P. Torres, M. W. Mitchell, V. Pruneri, “Phase-stable source of polarization-entangled photons in a linear double-pass configuration,” Opt. Express 21, 11943–11951 (2013).
[CrossRef] [PubMed]

T. Yamashita, S. Miki, H. Terai, Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[CrossRef] [PubMed]

Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (10)

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, “Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength,” Phys. Rev. A 87, 063801 (2013).
[CrossRef]

R.-B. Jin, J. Zhang, S. Ryosuke, M. Nobuyuki, M. Yasuyoshi, K. Hideo, E. Keiichi, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

R.-B. Jin, R. Shimizu, F. Kaneda, Y. Mitsumori, H. Kosaka, K. Edamatsu, “Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source,” Phys. Rev. A 88, 012324 (2013).
[CrossRef]

T. Kim, M. Fiorentino, F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

B.-S. Shi, A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69, 013803 (2004).
[CrossRef]

L. Vermeyden, M. Bonsma, C. Noel, J. M. Donohue, E. Wolfe, K. J. Resch, “Experimental violation of three families of Bell’s inequalities,” Phys. Rev. A 87, 032105 (2013).
[CrossRef]

W. P. Grice, I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

T. E. Keller, M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[CrossRef]

O. Kuzucu, F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[CrossRef]

Phys. Rev. Lett. (8)

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

N. Gisin, S. Pironio, N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[CrossRef]

A. Eckstein, A. Christ, P. J. Mosley, C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef] [PubMed]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

J. F. Clauser, A. Shimony, “Bell’s theorem : experimental tests and implications,” Rep. Prog. Phys. 41, 1881–1927 (1978).
[CrossRef]

Rev. Mod. Phys. (2)

J.-W. Pan, Z.-B. Chen, L. Chao-Yang, H. Weinfurter, A. Zeilinger, Żukowski Marek, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Other (5)

http://demonstrations.wolfram.com/sagnacinterferometer/ .

T. Lutz, P. Kolenderski, T. Jennewein, “Demonstration of spectral correlation control in a source of polarization entangled photon pairs at telecom wavelength,” arXiv:1309.4040 (2013).

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” arXiv:1403.6740 (2014).

R.-B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” arXiv:1309.1221 (2013).

D. R. Hamel, “Realization of novel entangled photon sources using periodically poled materials,” Master’s thesis, University of Waterloo (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical joint spectral amplitude (JSA, a, b) and joint spectral intensity (JSI, c, d) of the down-converted photons from a PPKTP crystal at 800 nm (a, c) and 1550 nm (b, d), with corresponding maximal spectral purities (p) of 0.16 and 0.82, respectively. In this simulation, we fixed the crystal lengths at 30 mm, and scanned the full width at half maximum (FWHM) of the pump so as to obtain the maximal purities. For (a, c), with a pump laser at 400 nm, the maximal purity was achieved at 0.16 with an FWHM of 0.014 nm (16.8 ps), and for (b, d) with a pump laser at 775 nm, the maximal purity was 0.82 with an FWHM of 0.4 nm (2.3 ps). (a, c) were calculated with the Sellmeier equations from [38] for y direction and [39] for z direction. (b, d) were calculated with the Sellmeier equations from [26] for y direction and [39] for z direction. The spectra of the signal and idler photons in (b, d) have a Gaussian shape with a bandwidth of around 1.2 nm. See [29] for more details of the simulations (b, d).

Fig. 2
Fig. 2

The experimental setup. Picosecond laser pulses (76 MHz, 792 nm, temporal duration ∼ 2 ps) from a mode-locked Titanium sapphire laser (Mira900, Coherent Inc.) passed through an optical isolator (OI), a half-wave plate (HWP) and a quarter-wave plate (QWP). Then the pulses were focused by a f = 200 mm lens (beam waist ∼ 45 μm), reflected by a dichroic mirror (DM: DMLP1180, Thorlabs) and guided into a Sagnac-loop. The Sagnac-loop consisted of a dual-wavelength polarization beam splitter (DPBS, extinction ratio = 200 : 1, Union Optics), a dual-wavelength HWP (DHWP, for both 792 nm and 1584 nm, Union Optics), and a 30-mm-long PPKTP crystal with a polling period of 46.1 μm for a type-II collinear group-velocity-matched SPDC. The temperature of the PPKTP was maintained at 32.5°C to achieve a degenerate wavelength at 1584 nm. The PPKTP crystal was pumped by clockwise (CW) and counterclockwise (CCW) laser pulses at the same time. The DHWP is set at 45 degree to make the CCW pump horizontally polarized. The down-converted photons, i.e., the signal and idler, were collimated by another two f = 200 mm lenses, filtered by longpass filters (LPFs) and then coupled into single-mode fibers by two couplers (SMFC). Finally, all the collected photons were sent to two superconducting nanowire single-photon detectors (SNSPDs), which were connected to a coincidence counter (&). To test the polarization correlation, we inserted two sets of Polarizers (HWP+PBS) before SMFCs. To carry out quantum state tomography, we replaced the combination of HWP+PBS with that of HWP+QWP+PBS. Since the SNSPDs were polarization dependent, the photons input into the SNSPD were adjusted by fiber-polarization controllers (not shown). The overall efficiency was estimated as 0.10, including the detectors’ average efficiency of 0.69, the SMFCs’ average collection efficiency of 0.23 and the whole optics’ transmission efficiency of 0.64.

Fig. 3
Fig. 3

Two-fold coincidence counts in one second as a function of the two polarizers, with a pump power of 10 mW. (a) for |ψ〉 state, (b) for |ψ+〉 state. The background counts have been subtracted. The error bars were added by assuming Poissonian statistics of these coincidence counts.

Fig. 4
Fig. 4

Real (left) and imaginary (right) parts of the reconstructed density matrix. (a) for |ψ〉 state, (b) for |ψ+〉 state.

Fig. 5
Fig. 5

Raw and background subtracted visibilities with Polarizer 1 set at 45 degrees for the |ψ〉 state as a function of incident pump power. The uncertainties of these visibilities were derived using Poissonian errors on the coincidence counts. The left two points corresponds to the data in Figs. 3 and 4, with an average photon numbers per pulse of 0.014.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| Ψ | H | V + e i ϕ β | V | H ,

Metrics