Abstract

We demonstrated an electrically tunable optical image system with separable focus function and zoom function based on three tunable focusing composite liquid crystal (LC) lenses. One LC lens in charge of the focus function helps to maintain the formed image at the same position and the other two LC lenses in charge of zoom function assist to continuously form an image at image sensor with tunable magnification of image size. The detail optical mechanism is investigated and the concept is demonstrated experimentally. The magnifications of the images can be switched continuously for the target in a range between 10 cm and 100 cm. The optical zoom ratio of this system maintains a constant~6.5:1 independent of the object distance. This study provides not only a guideline to design the image system with an electrically optical zoom, but also provide an experimental process to show how to operate the tunable focusing lenses in such an image system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio

Yi-Hsin Lin, Ming-Syuan Chen, and Hung-Chun Lin
Opt. Express 19(5) 4714-4721 (2011)

Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications

Yi-Hsin Lin and Hung-Shan Chen
Opt. Express 21(8) 9428-9436 (2013)

An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field

Hung-Shan Chen and Yi-Hsin Lin
Opt. Express 21(15) 18079-18088 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (John Wiley, 2012).
  2. H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
    [Crossref]
  3. H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico projector,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
    [Crossref]
  4. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref] [PubMed]
  5. M. S. Chen and Y. H. Lin, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
    [Crossref]
  6. H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  7. H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref] [PubMed]
  8. E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
    [Crossref] [PubMed]
  9. R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
    [Crossref] [PubMed]
  10. S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
    [Crossref] [PubMed]
  11. S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  12. K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
    [Crossref] [PubMed]
  13. E. C. Tam, “Smart electro-optical zoom lens,” Opt. Lett. 17(5), 369–371 (1992).
    [Crossref] [PubMed]
  14. M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
    [Crossref]
  15. P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
    [Crossref] [PubMed]
  16. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
    [Crossref]
  17. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
    [Crossref]
  18. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [Crossref] [PubMed]
  19. Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  20. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).
  21. Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
    [Crossref]
  22. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  23. Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
    [Crossref]
  24. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).
  25. Y. H. Lin, H. Ren, and S. T. Wu, “Polarization-independent liquid crystal devices,” Liquid Crystal Today 17(1-2), 2–8 (2008).
    [Crossref]
  26. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  27. Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 109, 104503 (2011).
    [Crossref]
  28. Y. H. Lin, M. S. Chen, W. C. Lin, and Y. S. Tsou, “A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90 degree twisted cell,” J. Appl. Phys. 112(2), 024505 (2012).
    [Crossref]

2013 (5)

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

2012 (4)

Y. H. Lin, M. S. Chen, W. C. Lin, and Y. S. Tsou, “A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90 degree twisted cell,” J. Appl. Phys. 112(2), 024505 (2012).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

M. S. Chen and Y. H. Lin, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

2011 (4)

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 109, 104503 (2011).
[Crossref]

2010 (4)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico projector,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[Crossref]

2009 (2)

K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[Crossref] [PubMed]

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[Crossref]

2008 (2)

R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
[Crossref] [PubMed]

Y. H. Lin, H. Ren, and S. T. Wu, “Polarization-independent liquid crystal devices,” Liquid Crystal Today 17(1-2), 2–8 (2008).
[Crossref]

2006 (1)

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

2005 (3)

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

1992 (1)

E. C. Tam, “Smart electro-optical zoom lens,” Opt. Lett. 17(5), 369–371 (1992).
[Crossref] [PubMed]

Arianpour, A.

E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
[Crossref] [PubMed]

Beer, R. D.

E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
[Crossref] [PubMed]

Chang, J. H.

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

Chen, H. S.

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, J.

R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
[Crossref] [PubMed]

Chen, M. S.

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

M. S. Chen and Y. H. Lin, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

Y. H. Lin, M. S. Chen, W. C. Lin, and Y. S. Tsou, “A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90 degree twisted cell,” J. Appl. Phys. 112(2), 024505 (2012).
[Crossref]

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

Choi, M.

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

Collings, N.

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Fan, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
[Crossref]

Fang, J.

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

Ford, J. E.

E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
[Crossref] [PubMed]

Gauza, S.

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

Ge, Z.

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

Grüger, H.

K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[Crossref] [PubMed]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Jung, K. D.

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

Kim, W.

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

Knobbe, J.

K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[Crossref] [PubMed]

Lee, E.

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

Lee, S.

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

Li, W.-Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, H. C.

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico projector,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, W. C.

Y. H. Lin, M. S. Chen, W. C. Lin, and Y. S. Tsou, “A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90 degree twisted cell,” J. Appl. Phys. 112(2), 024505 (2012).
[Crossref]

Lin, Y. H.

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

M. S. Chen and Y. H. Lin, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

Y. H. Lin, M. S. Chen, W. C. Lin, and Y. S. Tsou, “A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90 degree twisted cell,” J. Appl. Phys. 112(2), 024505 (2012).
[Crossref]

Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 109, 104503 (2011).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
[Crossref]

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico projector,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Y. H. Lin, H. Ren, and S. T. Wu, “Polarization-independent liquid crystal devices,” Liquid Crystal Today 17(1-2), 2–8 (2008).
[Crossref]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

Noguchi, M.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[Crossref]

Peng, R.

R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
[Crossref] [PubMed]

Peyghambarian, N.

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[Crossref] [PubMed]

Peyman, G.

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[Crossref] [PubMed]

Ren, H.

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Y. H. Lin, H. Ren, and S. T. Wu, “Polarization-independent liquid crystal devices,” Liquid Crystal Today 17(1-2), 2–8 (2008).
[Crossref]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

Reza Dodge, M.

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[Crossref] [PubMed]

Sato, S.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[Crossref]

Schwiegerling, J.

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[Crossref] [PubMed]

Seidl, K.

K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[Crossref] [PubMed]

Stamenov, I.

E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
[Crossref] [PubMed]

Tam, E. C.

E. C. Tam, “Smart electro-optical zoom lens,” Opt. Lett. 17(5), 369–371 (1992).
[Crossref] [PubMed]

Tremblay, E. J.

E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
[Crossref] [PubMed]

Tsou, Y. S.

Y. H. Lin, M. S. Chen, W. C. Lin, and Y. S. Tsou, “A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90 degree twisted cell,” J. Appl. Phys. 112(2), 024505 (2012).
[Crossref]

Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 109, 104503 (2011).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Valley, P.

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[Crossref] [PubMed]

Wang, B.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[Crossref]

Wu, S. T.

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Y. H. Lin, H. Ren, and S. T. Wu, “Polarization-independent liquid crystal devices,” Liquid Crystal Today 17(1-2), 2–8 (2008).
[Crossref]

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

Wu, Y. H.

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

Xu, S.

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Ye, M.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[Crossref]

Zhao, Y.

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

Zhuang, S.

R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Electron. Lett. (1)

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realized using liquid crystal lenses,” Electron. Lett. 45(12), 646 (2009).
[Crossref]

J. Appl. Phys. (3)

Y. H. Lin and Y. S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 109, 104503 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, W. C. Lin, and Y. S. Tsou, “A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90 degree twisted cell,” J. Appl. Phys. 112(2), 024505 (2012).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98(4), 043112 (2005).
[Crossref]

J. Disp. Technol. (1)

M. S. Chen and Y. H. Lin, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

J. Disp.Technol. (1)

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, Y. Zhao, J. Fang, and S. T. Wu, “IPS-LCD using a glass substrate and an anisotropic polymer film,” J. Disp.Technol. 2(1), 21–25 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico projector,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[Crossref]

Liquid Crystal Today (1)

Y. H. Lin, H. Ren, and S. T. Wu, “Polarization-independent liquid crystal devices,” Liquid Crystal Today 17(1-2), 2–8 (2008).
[Crossref]

Opt. Express (8)

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
[Crossref] [PubMed]

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

E. C. Tam, “Smart electro-optical zoom lens,” Opt. Lett. 17(5), 369–371 (1992).
[Crossref] [PubMed]

P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
[Crossref] [PubMed]

Trans. Electr. Electron. Mater. (1)

H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Other (2)

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (John Wiley, 2012).

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The structure of the electrically tunable optical zoom system using three composite LC lenses. A white arrow of the polarizer indicates the transmissive axis of the polarizer. ff, fo, and fe stand for the focal lengths of the LC focusing lens, the LC objective lens, and the LC eyepiece lens respectively. V1, V2, V3, V4, V5, and V6 are applied voltages of three LC lenses.
Fig. 2
Fig. 2 The lens power as a function of applied voltages for LC focusing lens, LC objective lens and LC eyepiece lens. λ = 532 nm.
Fig. 3
Fig. 3 Maximum object distance (pmax) of the system as a function of a. d = 10 cm. The light source was white light.
Fig. 4
Fig. 4 The object distance of the system as a function of lens power ϕf. d = 10 cm and “a” = 11 cm. The light source was white light. (V3,V4) = (90 Vrms, 25.5 Vrms) and (V5,V6) = (90 Vrms, 55 Vrms)
Fig. 5
Fig. 5 Magnification as a function of lens power of (a) the LC objective lens and the LC eyepiece lens when p = 20 cm. (b) and (c) are sliced from (a). (b) Magnification as a function of the LC objective lens at different p. (c) Magnification as a function of the LC eyepiece lens at different p. Gray line with gray triangles indicate the calculation results. d = 10 cm. a = 11 cm.
Fig. 6
Fig. 6 Optical zoom ratio, maximum magnification and minimum magnification as a function of the object distance p. Blue squares are the experimental results of optical zoom ratio. Red circles are the experimental results of maximum magnification. Green diamonds are the experimental results of minimum magnification. Gray triangles are the calculated results. d = 10 cm and a = 11 cm.
Fig. 7
Fig. 7 Image performance of the zooming system when the target is at p of 20 cm and ϕf = −3.11 m−1. (a) Magnification (M) = 2.05 (b) M = 1 (c) M = 0.32; when the target is at p of 50 cm and ϕf = −5.66 m−1. (d) M = 2.17 (e) M = 1 (f) M = 0.31; when the target is at p of 100 cm and ϕf = −9.2 m−1. (g) M = 2.24 (h) M = 1 (i) M = 0.33.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ 1 p 1 a = ϕ f 1 a 1 b = ϕ o 1 d+b 1 = ϕ e ,
M( ϕ f , ϕ o )= p pp×d×( ϕ f + ϕ o )+d .
M( ϕ e )=1 ϕ e ×d.
M min = 1 12×d× ϕ min +d/p .
M max =1d× ϕ min .
ZR=(12×d× ϕ min + d p )×(1d× ϕ min ).
ZR=(12×d× ϕ min + d a )×(1d× ϕ min ),

Metrics